Maghemite/Polyvinylidene Fluoride Nanocomposite for Transparent, Flexible Triboelectric Nanogenerator and Noncontact Magneto-Triboelectric Nanogenerator

被引:34
|
作者
Fatma, Bushara [1 ]
Bhunia, Ritamay [1 ]
Gupta, Shashikant [1 ]
Verma, Amit [2 ]
Verma, Vivek [1 ]
Garg, Ashish [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Mat Sci & Engn, Fac Bldg, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol Kanpur, Dept Elect Engn, ACES Bldg, Kanpur 208016, Uttar Pradesh, India
来源
基金
英国工程与自然科学研究理事会;
关键词
PVDF composites; Triboelectric energy harvesting; Magnetic energy harvesting; TENG; Flexible energy harvesting; WIND ENERGY; PERFORMANCE; SERIES; VIBRATION; GENERATOR; OUTPUT;
D O I
10.1021/acssuschemeng.9b02953
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Propelled by the development of the Internet of things and other low-power devices such as in health care or sensing applications, there is growing emphasis on development of energy harvesting devices based on piezoelectric and triboelectric harvesting. We demonstrate a highly flexible and transparent triboelectric nanogenerator (TENG) prepared by incorporating maghemite (gamma-Fe2O3) fillers in polyvinylidene fluoride (PVDF) with polyethylene terephthalate (PET) as a triboelectric counterpart for potential application in powering wearable electronic devices. Addition of gamma-Fe2O3 fillers in the PVDF matrix results in a power output with an average open circuit voltage of 250 V and short circuit current of 5 mu A, which is substantially higher than that from only-PVDF-based TENG. With manually applied force, the lightweight TENG device (area similar to 14.5 cm(2) and weight similar to 1 g) can induce a maximum power output of 0.17 mW with a power density of 0.117 W m(-2). In addition, this device is extremely robust with excellent long-term stability for approximately 3000 s. We harvested biomechanical motion in the form of slow and fast foot movement by attaching this device to the sole of footwear. Moreover, the TENG device could continuously supply enough power to light up 108 light-emitting diodes (LEDs) connected in series, without the use of a capacitor and has potential applications in self-powered wearable and portable electronics obviating the use of batteries. Moreover, this device is shown to harvest energy from the rotary pump to charge a 1 mu F capacitor to a value of similar to 30 V in just 90 s. In addition, a thick magnetic gamma-Fe2O3/PVDF nanocomposite film was also successfully tested as a magneto-triboelectric nanogenerator (M-TENG) in noncontact mode showing potential for harvesting of the stray magnetic field.
引用
收藏
页码:14856 / 14866
页数:21
相关论文
共 50 条
  • [1] A Flexible and Transparent Graphene Based Triboelectric Nanogenerator
    Shankaregowda, Smitha Ankanahalli
    Nanjegowda, Chandrashekar Bananakere
    Cheng, Xiaoliang
    Shi, Mayue
    Liu, Zhongfan
    Zhang, Haixia
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2015, : 1477 - 1480
  • [2] Remarkably enhanced triboelectric nanogenerator based on flexible and transparent monolayer titania nanocomposite
    Wen, Rongmei
    Guo, Junmeng
    Yu, Aifang
    Zhang, Ke
    Kou, Jinzong
    Zhu, Yaxing
    Zhang, Yang
    Li, Bao-Wen
    Zhai, Junyi
    NANO ENERGY, 2018, 50 : 140 - 147
  • [3] A Flexible and Transparent Graphene-Based Triboelectric Nanogenerator
    Shankaregowda, Smitha Ankanahalli
    Nanjegowda, Chandrashekar Banankere
    Cheng, Xiao-Liang
    Shi, Ma-Yue
    Liu, Zhong-Fan
    Zhang, Hai-Xia
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2016, 15 (03) : 435 - 441
  • [4] Preparation and Optimization of Polyvinylidene Fluoride (PVDF) Triboelectric Nanogenerator via Electrospinning
    Hao, Yu
    Bin, Yu
    Tao, Huang
    Cheng, Wang
    Wang Hongzhi
    Zhu Meifang
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2015, : 1485 - 1488
  • [5] High-Performance Flexible Wearable Triboelectric Nanogenerator Sensor by β-Phase Polyvinylidene Fluoride Polarization
    Yang, Jiayi
    Wang, Meiqi
    Meng, Yan
    Niu, Zihao
    Hao, Yijun
    Liu, Haopeng
    Su, Wei
    Zhang, Hongke
    Qin, Yong
    Zhang, Chuguo
    Li, Xiuhan
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (02) : 1385 - 1395
  • [6] An Active Temperature Sensor based on Encapsulated Flexible and Transparent Triboelectric Nanogenerator
    Wan, Ji
    Wang, Hao-Bin
    Miao, Li-Ming
    Guo, Hang
    Chen, Hao-Tian
    Cheng, Xiao-Liang
    Zhang, Hai-Xia
    2019 14TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (IEEE-NEMS 2019), 2019, : 229 - 232
  • [7] Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature
    Hu, Yang
    Zhang, Meng
    Qin, Chaoran
    Qian, Xinyi
    Zhang, Lina
    Zhou, Jinping
    Lu, Ang
    CARBOHYDRATE POLYMERS, 2021, 265
  • [8] A transparent, flexible triboelectric nanogenerator for anti-counterfeiting based on photothermal effect
    Wang, Ran
    Jin, Xin
    Wang, Qianfei
    Zhang, Qiran
    Yuan, Hao
    Jiao, Tifeng
    Cao, Xia
    Ma, Jinming
    MATTER, 2023, 6 (05) : 1514 - 1529
  • [9] Transparent, Flexible Cellulose Nanofibril-Phosphorene Hybrid Paper as Triboelectric Nanogenerator
    Cui, Peng
    Parida, Kaushik
    Lin, Meng-Fang
    Xiong, Jiaqing
    Cai, Guofa
    Lee, Pooi See
    ADVANCED MATERIALS INTERFACES, 2017, 4 (22):
  • [10] Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting
    Xi, Yinhu
    Hua, Jing
    Shi, Yijun
    NANO ENERGY, 2020, 69