Local quasi-interpolation by cubic C1 splines on type-6 tetrahedral partitions

被引:0
|
作者
Sorokina, Tatyana
Zeilfelder, Frank [1 ]
机构
[1] Univ Mannheim, Inst Math, D-68131 Mannheim, Germany
[2] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
trivariate splines; quasi-interpolation; Bernstein-Bezier form; type-6 tetrahedral partitions; approximation order;
D O I
10.1093/imanum/drl014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe an approximating scheme based on cubic C-1 splines on type-6 tetrahedral partitions using data on volumetric grids. The quasi-interpolating piecewise polynomials are directly determined by setting their Bernstein-Bezier coefficients to appropriate combinations of the data values. Hence, each polynomial piece of the approximating spline is immediately available from local portions of the data, without using prescribed derivatives at any point of the domain. The locality of the method and the uniform boundedness of the associated operator provide an error bound, which shows that the approach can be used to approximate and reconstruct trivariate functions. Simultaneously, we show that the derivatives of the quasi-interpolating splines yield nearly optimal approximation order. Numerical tests with up to 17 x 10(6) data sites show that the method can be used for efficient approximation.
引用
收藏
页码:74 / 101
页数:28
相关论文
共 50 条
  • [1] Local Lagrange interpolation by quintic C1 splines on type-6 tetrahedral partitions
    Nuernberger, G.
    Rhein, M.
    Schneider, G.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (04) : 529 - 542
  • [2] Local lagrange interpolation with cubic C1 splines on tetrahedral partitions
    Hecklin, Gero
    Nuernberger, Guenther
    Schumaker, Larry L.
    Zeilfelder, Frank
    [J]. JOURNAL OF APPROXIMATION THEORY, 2009, 160 (1-2) : 89 - 102
  • [3] Dimension of C1-splines on type-6 tetrahedral partitions
    Hangelbroek, T
    Nürnberger, G
    Rössl, C
    Seidel, HP
    Zeilfelder, F
    [J]. JOURNAL OF APPROXIMATION THEORY, 2004, 131 (02) : 157 - 184
  • [4] Quasi-interpolation by C1 quartic splines on type-1 triangulations
    Barrera, D.
    Dagnino, C.
    Ibanez, M. J.
    Remogna, S.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 349 : 225 - 238
  • [5] Local Lagrange interpolation using cubic C1 splines on type-4 cube partitions
    Matt, Michael A.
    Nuernberger, Guenther
    [J]. JOURNAL OF APPROXIMATION THEORY, 2010, 162 (03) : 494 - 511
  • [6] Trivariate quartic splines on type-6 tetrahedral partitions and their applications
    Dagnino, Catterina
    Lamberti, Paola
    Remogna, Sara
    [J]. COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2012, 3 (02):
  • [7] Quasi-interpolation by quadratic C1-splines on truncated octahedral partitions
    Rhein, M.
    Kalbe, T.
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (08) : 825 - 841
  • [8] Optimal bivariate C1 cubic quasi-interpolation on a type-2 triangulation
    Barrera, D.
    Guessab, A.
    Ibanez, M. J.
    Nouisser, O.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (04) : 1188 - 1199
  • [9] C1 Quintic Splines on Type-4 Tetrahedral Partitions
    Larry L. Schumaker
    Tatyana Sorokina
    [J]. Advances in Computational Mathematics, 2004, 21 : 421 - 444
  • [10] An explicit quasi-interpolation scheme based on C1 quartic splines on type-1 triangulations
    Sorokina, Tatyana
    Zeilfelder, Frank
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2008, 25 (01) : 1 - 13