Research on Concept-Drifting Data Stream Based on Fuzzy Integral Ensemble Classifier System

被引:0
|
作者
Zhang, Baoju [1 ]
Chen, Yidi [1 ]
Xue, Lei [1 ]
机构
[1] Tianjin Normal Univ, Tianjin Key Lab Wireless Mobile Commun & Power Tr, Tianjin 300387, Peoples R China
关键词
Data stream; Concept drift; Fuzzy integral; Ensemble classification;
D O I
10.1007/978-981-13-6508-9_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the arrival of the era of big data, a large amount of data stream generates in the real world. However, the existence of concept drift has brought great challenges to data stream classification. Therefore, this paper proposed an ensemble classifier system based on fuzzy integral to solve the above problem. And after the experimental evaluation, we can approve the proposed algorithm outperforms other algorithms in terms of classification performance and the ability to adapt to new concepts efficiently.
引用
收藏
页码:225 / 232
页数:8
相关论文
共 50 条
  • [1] AN ADAPTIVE ENSEMBLE CLASSIFIER FOR CONCEPT DRIFTING STREAM
    Wui, Dengyuan
    Liu, Ying
    Gao, Ge
    Mao, Zhendong
    Ma, Weishan
    He, Tao
    [J]. 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, 2009, : 69 - 75
  • [2] An Improving Fuzzy C-means Algorithm for Concept-Drifting Data Stream
    Zhang, Baoju
    Xue, Lei
    Wang, Wei
    Qin, Shan
    Wang, Dan
    [J]. COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2018, 423 : 439 - 450
  • [3] Mining Multi-label Concept-Drifting Data Streams Using Dynamic Classifier Ensemble
    Qu, Wei
    Zhang, Yang
    Zhu, Junping
    Qiu, Qiang
    [J]. ADVANCES IN MACHINE LEARNING, PROCEEDINGS, 2009, 5828 : 308 - 321
  • [4] On reducing classifier granularity in mining concept-drifting data streams
    Wang, P
    Wang, HX
    Wu, XC
    Wang, W
    Shi, BL
    [J]. FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2005, : 474 - 481
  • [5] Pyramid Stack Data Stream Mining for Handling Concept-drifting
    Xu, Zhuoran
    Hou, Cuiqin
    Xia, Yingju
    Sun, Jun
    Inakoshi, Hiroya
    Yugami, Nobuhiro
    [J]. PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 33 - 37
  • [6] An Ensemble of Classifiers Algorithm Based on GA for Handling Concept-Drifting Data Streams
    Guan, Jinghua
    Guo, Wu
    Chen, Heng
    Lou, Oujun
    [J]. 2014 SIXTH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING (PAAP), 2014, : 282 - 284
  • [7] Random Ensemble Decision Trees for Learning Concept-Drifting Data Streams
    Li, Peipei
    Wu, Xindong
    Liang, Qianhui
    Hu, Xuegang
    Zhang, Yuhong
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I: 15TH PACIFIC-ASIA CONFERENCE, PAKDD 2011, 2011, 6634 : 313 - 325
  • [8] Mining Concept-Drifting and Noisy Data Streams using Ensemble Classifiers
    Ouyang, Zhenzheng
    Zhou, Min
    Wang, Tao
    Wu, Quanyuan
    [J]. 2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL IV, PROCEEDINGS, 2009, : 360 - +
  • [9] An adaptive distributed ensemble approach to mine concept-drifting data streams
    Folino, Gianluigi
    Pizzuti, Clara
    Spezzano, Giandomenico
    [J]. 19TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL II, PROCEEDINGS, 2007, : 183 - 187
  • [10] Learning concept-drifting data streams with random ensemble decision trees
    Li, Peipei
    Wu, Xindong
    Hu, Xuegang
    Wang, Hao
    [J]. NEUROCOMPUTING, 2015, 166 : 68 - 83