Singular operator as a parameter of self-adjoint extensions

被引:0
|
作者
Koshmanenko, V [1 ]
机构
[1] Inst Math, UA-252601 Kiev 4, Ukraine
来源
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Let A be a symmetric restriction of a self-adjoint bounded from below operator A in a Hilbert space H and let A(infinity) denote the Friedrichs extension of A. We prove that in the case, where A(infinity) not equal A, under natural conditions, each self-adjoint extension ii of A has a unique representation in the form of a generalized sum, (A) over tilde = A (+) over tilde V, where V is a singular operator acting in the A-scale of Hilbert spaces, from H-1(A) to H-1(A). In the particular case, where (A)over dot has deficiency indices (1, 1), this result has been proven by Krein and Yavrian.
引用
收藏
页码:205 / 223
页数:19
相关论文
共 50 条
  • [1] SELF-ADJOINT EXTENSIONS OF A SCHRODINGER OPERATOR WITH SINGULAR POTENTIAL
    KOCHUBEI, AN
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1991, 32 (03) : 401 - 409
  • [2] Self-adjoint extensions of singular third-order differential operator and applications
    Bairamov, Elgiz
    Sertbas, Meltem
    Ismailov, Zameddin I.
    [J]. INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014), 2014, 1611 : 177 - 182
  • [3] DOMAINS OF SELF-ADJOINT EXTENSIONS OF A SCHRODINGER OPERATOR
    GOODALL, DP
    MICHAEL, IM
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1973, 7 (NOV): : 265 - 271
  • [4] On the singular continuous spectrum of self-adjoint extensions
    Brasche, J
    Neidhardt, H
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1996, 222 (04) : 533 - 542
  • [5] SPECTRA OF SELF-ADJOINT EXTENSIONS OF A SYMMETRIC OPERATOR
    KOCHUBEI, AN
    [J]. MATHEMATICAL NOTES, 1976, 19 (3-4) : 262 - 265
  • [6] Self-adjoint extensions for a class of singular operators
    AMIROV, Rauf
    HUSEYNOV, Hidayat Mehmetoglu
    DURAK, Sevim
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 300 - 304
  • [7] Singular rank one perturbations of self-adjoint operators and Krein theory of self-adjoint extensions
    Albeverio, S
    Koshmanenko, V
    [J]. POTENTIAL ANALYSIS, 1999, 11 (03) : 279 - 287
  • [8] Singular Rank One Perturbations of Self-Adjoint Operators and Krein Theory of Self-Adjoint Extensions
    Sergio Albeverio
    Volodymyr Koshmanenko
    [J]. Potential Analysis, 1999, 11 : 279 - 287
  • [9] Self-adjoint extensions for singular linear Hamiltonian systems
    Sun, Huaqing
    Shi, Yuming
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 797 - 814
  • [10] Quasinormal modes and self-adjoint extensions of the Schrodinger operator
    Fabris, Julio C.
    Richarte, Martin G.
    Saa, Alberto
    [J]. PHYSICAL REVIEW D, 2021, 103 (04)