Precise Ge quantum dot placement for quantum tunneling devices

被引:33
|
作者
Chen, Kuan-Hung [1 ]
Chien, Chung-Yen [1 ]
Li, Pei-Wen [1 ]
机构
[1] Natl Cent Univ, Dept Elect Engn, Chungli 320, Taiwan
关键词
PATTERN-DEPENDENT OXIDATION; ROOM-TEMPERATURE; THERMAL-OXIDATION; ON-INSULATOR; SILICON; NANOSTRUCTURES; TRANSISTORS;
D O I
10.1088/0957-4484/21/5/055302
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study demonstrates the precise placement of Ge quantum dots (QDs) in an SiO(2) or Si(3)N(4) matrix in a self-organized manner by thermally oxidizing SiGe in nanostructures. The effectiveness of this method is shown by a variety of geometries including nanotrenches, nanorods and polygonal nanocavities. Modulating the structural geometry and peripheral spacer materials effectively places a single Ge QD in the center of an oxidized SiGe nanostructure or individual QDs at the corners (edges). This study also reports the fabrication of Ge QD single-electron devices that exhibit clear Coulomb staircases and differential conductance oscillations at room temperature.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Positioning and numbering Ge quantum dots for effective quantum tunneling devices
    Chen, K. H.
    Chien, C. Y.
    Lai, W. T.
    Lee, S. W.
    Li, P. W.
    [J]. 2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 536 - 539
  • [2] Electroluminescence from the Ge quantum dot MOS tunneling diodes
    Liao, MH
    Yu, CY
    Guo, TH
    Lin, CH
    Liu, CW
    [J]. IEEE ELECTRON DEVICE LETTERS, 2006, 27 (04) : 252 - 254
  • [3] CMOS-Compatible Precise Placement of Ge Quantum Dots for Nanoelectronic, Nanophotonic, and Energy Conversion Devices
    Chen, I-H
    Chen, K-H
    Wang, C-C
    Li, Pei-Wen
    [J]. LOW-DIMENSIONAL NANOSCALE ELECTRONIC AND PHOTONIC DEVICES 5 -AND- STATE-OF-THE-ART PROGRAM ON COMPOUND SEMICONDUCTORS 54 (SOTAPOCS 54), 2012, 50 (06): : 313 - 318
  • [4] Tunneling through a quantum dot in a quantum waveguide
    A. A. Arsen’ev
    [J]. Computational Mathematics and Mathematical Physics, 2010, 50 : 1162 - 1171
  • [5] Tunneling through a Quantum Dot in a Quantum Waveguide
    Arsen'ev, A. A.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (07) : 1162 - 1171
  • [6] Quantum dot devices
    Fafard, S
    Liu, HC
    Wasilewski, ZR
    McCaffrey, J
    Spanner, M
    Raymond, S
    Allen, CN
    Hinzer, K
    Lapointe, J
    Struby, C
    Gao, M
    Hawrylak, P
    Gould, C
    Sachrajda, A
    Zawadzki, P
    [J]. OPTOELECTRONIC MATERIALS AND DEVICES II, 2000, 4078 : 100 - 114
  • [7] Quantum Dot Devices
    Coleman, J. J.
    [J]. 2011 37TH EUROPEAN CONFERENCE AND EXHIBITION ON OPTICAL COMMUNICATIONS (ECOC 2011), 2011,
  • [8] Ge quantum dot tunneling diode with room temperature negative differential resistance
    Oehme, M.
    Karmous, A.
    Sarlija, M.
    Werner, J.
    Kasper, E.
    Schulze, J.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (01)
  • [9] Analytical model for quantum well to quantum dot tunneling
    Clerc, RL
    Ghibaudo, G
    Pananakakis, G
    [J]. ESSDERC 2003: PROCEEDINGS OF THE 33RD EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2003, : 461 - 464
  • [10] Quantum optics with single quantum dot devices
    Zwiller, V
    Aichele, T
    Benson, O
    [J]. NEW JOURNAL OF PHYSICS, 2004, 6 : 1 - 23