Nonparametric estimation of the conditional variance function with correlated errors

被引:8
|
作者
Vilar-Fernandes, Juan M. [1 ]
Francisco-Fernandez, Mario [1 ]
机构
[1] Univ A Coruna, Fac Informat, Dept Matemat, La Coruna 15071, Spain
关键词
autoregressive process; heteroscedasticity; local polynomials; volatility;
D O I
10.1080/10485250601014271
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a fixed regression model where the errors are a strictly stationary process and in which both functions, the conditional mean and the conditional variance (volatility), are unknown. Two nonparametric estimators of the volatility function based on local polynomial fitting are studied. Expressions of the asymptotic bias and variance are given and the asymptotic normality is shown for both estimators. The influence of the dependence of the data is observed in the expressions of the variance. A simulation study and an analysis with real economic data illustrate the behavior of the proposed nonparametric estimators.
引用
收藏
页码:375 / 391
页数:17
相关论文
共 50 条
  • [1] On conditional variance estimation in nonparametric regression
    Siddhartha Chib
    Edward Greenberg
    [J]. Statistics and Computing, 2013, 23 : 261 - 270
  • [2] On conditional variance estimation in nonparametric regression
    Chib, Siddhartha
    Greenberg, Edward
    [J]. STATISTICS AND COMPUTING, 2013, 23 (02) : 261 - 270
  • [3] Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors
    Kulik, Rafal
    Wichelhaus, Cornelia
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 856 - 898
  • [4] On the estimation of a monotone conditional variance in nonparametric regression
    Dette, Holger
    Pilz, Kay
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2009, 61 (01) : 111 - 141
  • [5] On the estimation of a monotone conditional variance in nonparametric regression
    Holger Dette
    Kay Pilz
    [J]. Annals of the Institute of Statistical Mathematics, 2009, 61 : 111 - 141
  • [6] Kriging with nonparametric variance function estimation
    Opsomer, JD
    Ruppert, D
    Wand, MP
    Holst, U
    Hoessjer, O
    [J]. DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 111 - 111
  • [7] Kriging with nonparametric variance function estimation
    Opsomer, JD
    Ruppert, D
    Wand, MP
    Holst, U
    Hössjer, O
    [J]. BIOMETRICS, 1999, 55 (03) : 704 - 710
  • [8] MOVING TAYLOR BAYESIAN REGRESSION FOR NONPARAMETRIC MULTIDIMENSIONAL FUNCTION ESTIMATION WITH POSSIBLY CORRELATED ERRORS
    Heitzig, Jobst
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (04): : A1928 - A1950
  • [9] Trapezoidal rule and sampling designs for the nonparametric estimation of the regression function in models with correlated errors
    Benelmadani, D.
    Benhenni, K.
    Louhichi, S.
    [J]. STATISTICS, 2020, 54 (01) : 59 - 96
  • [10] Conditional variance estimation via nonparametric generalized additive models
    Kyusang Yu
    [J]. Journal of the Korean Statistical Society, 2019, 48 : 287 - 296