Group decision making with incomplete intuitionistic fuzzy preference relations based on additive consistency

被引:38
|
作者
Chen, Hui-ping [1 ,2 ]
Xu, Gui-qiong [1 ]
机构
[1] Shanghai Univ, Sch Management, Shanghai 200444, Peoples R China
[2] Nantong Univ, Nantong 226019, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Group decision making; Intuitionistic fuzzy preference relations; Additive consistency; Incomplete; Consensus; MULTIPLICATIVE CONSISTENCY; CONSENSUS; SELECTION; VALUES; MODEL;
D O I
10.1016/j.cie.2019.06.033
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Due to complex circumstance, decision makers may have difficulty in offering complete intuitionistic fuzzy preference relations (IFPRs) in the decision making process, so that it will lead to loss of important information. By applying the existing additive consistency to estimate missing preference values, some obtained values may conflict with the defined domain. To address this issue, we present a new approach to group decision making (GDM) problems with incomplete IFPRs. Firstly, we introduce the concept of additive consistency for IFPRs. Then, two different conditions are provided in theorems, under these two conditions, missing preference values can be estimated such that they are expressible and consistent. Subsequently, for the incomplete IFPR which does not satisfy the conditions in two theorems, a new algorithm is put forward to revise the inconsistent preference values. Furthermore, based on the mean consensus index, the weights of decision makers can be determined in the process of GDM. Finally, an illustrative example is chosen to demonstrate the validity and practicality of the proposed method.
引用
收藏
页码:560 / 567
页数:8
相关论文
共 50 条
  • [1] Group decision making with incomplete fuzzy preference relations based on the additive consistency and the order consistency
    Lee, Li-Wei
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (14) : 11666 - 11676
  • [2] A novel additive consistency for intuitionistic fuzzy preference relations in group decision making
    Yang, Wei
    Jhang, Seong Tae
    Shi, Shao Guang
    Xu, Ze Shui
    Ma, Zhen Ming
    [J]. APPLIED INTELLIGENCE, 2020, 50 (12) : 4342 - 4356
  • [3] A novel additive consistency for intuitionistic fuzzy preference relations in group decision making
    Wei Yang
    Seong Tae Jhang
    Shao Guang Shi
    Ze Shui Xu
    Zhen Ming Ma
    [J]. Applied Intelligence, 2020, 50 : 4342 - 4356
  • [4] Group decision making using incomplete fuzzy preference relations based on the additive consistency and the order consistency
    Chen, Shyi-Ming
    Lin, Tsung-En
    Lee, Li-Wei
    [J]. INFORMATION SCIENCES, 2014, 259 : 1 - 15
  • [5] Decision making based on intuitionistic fuzzy preference relations with additive approximate consistency
    Liu, Fang
    Tan, Xu
    Yang, Hui
    Zhao, Hui
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 4041 - 4058
  • [6] Group decision-making model with incomplete fuzzy preference relations based on additive consistency
    Herrera-Viedma, Enrique
    Chiclana, Francisco
    Herrera, Francisco
    Alonso, Sergio
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (01): : 176 - 189
  • [7] A NEW METHOD FOR GROUP DECISION MAKING USING INCOMPLETE FUZZY PREFERENCE RELATIONS BASED ON THE ADDITIVE CONSISTENCY AND THE ORDER CONSISTENCY
    Chen, Shyi-Ming
    Lin, Tsung-En
    Lee, Li-Wei
    [J]. PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 1256 - 1261
  • [8] A Consistency and Consensus Based Method for Group Decision Making with Intuitionistic Fuzzy Preference Relations
    Xu, Gaili
    [J]. 2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [9] Approaches to group decision making with intuitionistic fuzzy preference relations based on multiplicative consistency
    Jin, Feifei
    Ni, Zhiwei
    Chen, Huayou
    Li, Yaping
    [J]. KNOWLEDGE-BASED SYSTEMS, 2016, 97 : 48 - 59
  • [10] A group decision making model considering both the additive consistency and group consensus of intuitionistic fuzzy preference relations
    Chu, Junfeng
    Liu, Xinwang
    Wang, Yingming
    Chin, Kwai-Sang
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2016, 101 : 227 - 242