An Incremental Algorithm for Estimating Extreme Quantiles

被引:0
|
作者
Joseph, Ajin George [1 ]
Bhatnagar, Shalabh [2 ,3 ]
机构
[1] Indian Inst Technol, Dept Comp Sci & Engn, Tirupati, Andhra Pradesh, India
[2] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore, Karnataka, India
[3] Indian Inst Sci, Robert Bosch Ctr Cyber Phys Syst, Bangalore, Karnataka, India
关键词
STOCHASTIC-APPROXIMATION; INFERENCE;
D O I
10.1109/icc47138.2019.9123207
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Extreme quantile is a very influential and powerful performance measure in high risk environments like financial markets, targeted advertising and high frequency trading. Extreme quantiles are defined as the threshold in the range of the performance values of the system being monitored beyond which the probability is extremely low. Unfortunately, the estimation of extreme quantiles is usually accompanied by high variance. We provide an incremental, single pass and adaptive variance reduction technique to estimate extreme quantiles. We further provide additional theoretical and empirical analysis pertaining to the effectiveness of our approach. Our experiments show considerable performance improvement over other widely popular algorithms.
引用
收藏
页码:286 / 291
页数:6
相关论文
共 50 条
  • [1] Estimating extreme quantiles under random truncation
    Gardes, Laurent
    Stupfler, Gilles
    [J]. TEST, 2015, 24 (02) : 207 - 227
  • [2] Estimating extreme quantiles of Weibull tail distributions
    Gardes, L
    Girard, S
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2005, 34 (05) : 1065 - 1080
  • [3] Estimating extreme quantiles under random truncation
    Laurent Gardes
    Gilles Stupfler
    [J]. TEST, 2015, 24 : 207 - 227
  • [4] Estimating extreme quantiles for distributions of air pollution data
    Sepp, T
    Sennewald, E
    Heller, WD
    [J]. GEFAHRSTOFFE REINHALTUNG DER LUFT, 1996, 56 (11): : 419 - 424
  • [5] Estimating the extreme value index and high quantiles with exponential regression models
    Matthys, G
    Beirlant, J
    [J]. STATISTICA SINICA, 2003, 13 (03) : 853 - 880
  • [6] A BAYESIAN APPROACH FOR ESTIMATING EXTREME QUANTILES UNDER A SEMIPARAMETRIC MIXTURE MODEL
    Cabras, Stefano
    Eugenia Castellanos, Maria
    [J]. ASTIN BULLETIN, 2011, 41 (01): : 87 - 106
  • [7] ON ESTIMATING QUANTILES
    BLUM, JR
    ROSENBLATT, J
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1963, 15 (01) : 45 - 50
  • [8] SEQUEM: ESTIMATING EXTREME STEADY-STATE QUANTILES VIA THE MAXIMUM TRANSFORMATION
    Alexopoulos, Christos
    Goldsman, David
    Mokashi, Anup
    Tien, Kai-Wen
    Wilson, James R.
    [J]. 2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 562 - 574
  • [9] A SURVEY AND COMPARISON OF METHODS FOR ESTIMATING EXTREME RIGHT TAIL-AREA QUANTILES
    HUGHEY, RL
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (04) : 1463 - 1496
  • [10] On Extreme Regression Quantiles
    Stephen Portnoy
    Jana Jurecčkova´
    [J]. Extremes, 1999, 2 (3) : 227 - 243