Big Data Forecasting for Improving Maritime Search Operations

被引:0
|
作者
Martinson, Eric [1 ]
Troyer, Jon [1 ]
Gillies, Andy [1 ]
机构
[1] Soar Technol, Autonomous Platforms, Ann Arbor, MI 48105 USA
关键词
search and rescue; maritime; deep learning; big data;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This work presents a big data solution for improving maritime search and rescue. In contrast to the current model-based state of the art, we propose using data direct from surface drifters in the vicinity of the last known contact to predict future motion of the missing person, object, or vessel with a deep neural network. Trained and tested on publicly available data from the DARPA Ocean of Things program, we demonstrate >50% reductions in mean squared error at the 4-hour time horizon vs either linear or ocean model-based trajectory estimation solutions.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Seaport Data Space for Improving Logistic Maritime Operations
    Sarabia-Jacome, David
    Palau, Carlos E.
    Esteve, Manuel
    Boronat, Fernando
    [J]. IEEE ACCESS, 2020, 8 : 4372 - 4382
  • [2] Forecasting the Consumption Trend by the Big Data: An Application of the Web Search Data
    Sun, Y.
    Lv, B. F.
    Xue, T.
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN MANAGEMENT ENGINEERING AND INFORMATION TECHNOLOGY (AMEIT 2015), 2015, : 797 - 808
  • [3] Improving the approaches of traffic demand forecasting in the big data era
    Zhao, Yongmei
    Zhang, Hongmei
    An, Li
    Liu, Quan
    [J]. CITIES, 2018, 82 : 19 - 26
  • [4] Context Matters: Improving the Uses of Big Data for Forecasting Civil Unrest Emerging Phenomena and Big Data
    Manrique, Pedro
    Qi, Hong
    Morgenstern, Ana
    Velasquez, Nicolas
    Lu, Tsai-Ching
    Johnson, Neil
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS: BIG DATA, EMERGENT THREATS, AND DECISION-MAKING IN SECURITY INFORMATICS, 2013, : 169 - 172
  • [5] Improving emergency response operations in maritime accidents using social media with big data analytics: a case study of the MV Wakashio disaster
    Dominguez-Pery, Carine
    Tassabehji, Rana
    Vuddaraju, Lakshmi Narasimha Raju
    Duffour, Vikhram Kofi
    [J]. INTERNATIONAL JOURNAL OF OPERATIONS & PRODUCTION MANAGEMENT, 2021, 41 (09) : 1544 - 1567
  • [6] Online Distributed Maritime Event Detection & Forecasting over Big Vessel Tracking Data
    Vodas, Marios
    Bereta, Konstantina
    Kladis, Dimitris
    Zissis, Dimitris
    Alevizos, Elias
    Ntoulias, Emmanouil
    Artikis, Alexander
    Deligiannakis, Antonios
    Kontaxakis, Antonios
    Giatrakos, Nikos
    Arnu, David
    Yaqub, Edwin
    Temme, Fabian
    Torok, Mate
    Klinkenberg, Ralf
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 2052 - 2057
  • [7] Advances in Forecasting-Mediated Operations Management in Big Data Era Preface
    Choi, Tsan-Ming
    Chan, Hing Kai
    Yue, Xiaohang
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2017, 34 (01)
  • [8] Big Data in the Maritime Industry
    Mirovic, Maris
    Milicevic, Mario
    Obradovic, Ines
    [J]. NASE MORE, 2018, 65 (01): : 56 - 62
  • [9] Improving the Maritime Transshipment Operations of the Noble Group
    Fragkos, Ioannis
    De Reyck, Bert
    [J]. INTERFACES, 2016, 46 (03) : 203 - 217
  • [10] Big Search, Big Data
    Badke, William
    [J]. ONLINE, 2012, 36 (03): : 47 - 49