The spectral action principle in noncommutative geometry and the superstring

被引:10
|
作者
Chamseddine, AH
机构
[1] Theoretische Physik, ETH-Zürich
关键词
D O I
10.1016/S0370-2693(97)00334-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A supersymmetric theory in two dimensions has enough data to define a noncommutative space thus making it possible to use all tools of noncommutative geometry. In particular, we apply this to the N=1 supersymmetric non-linear sigma model and derive an expression for the generalized loop space Dirac operator, in presence of a general background, using canonical quantization. The spectral action principle is then used to determine a spectral action valid for the fluctuations of the string modes. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 50 条
  • [1] The spectral action principle in noncommutative geometry anti the superstring
    Chamseddine, A. H.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 400 (1-2):
  • [2] A nonperturbative form of the spectral action principle in noncommutative geometry
    Figueroa, H
    Gracia-Bondia, JM
    Lizzi, F
    Varilly, JC
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 26 (3-4) : 329 - 339
  • [3] Spectral action in noncommutative geometry: An example
    Iochum, B.
    INTERNATIONAL CONFERENCE ON NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2008, 103
  • [4] Lattice superstring and noncommutative geometry
    Nishimura, J
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 129 : 121 - 134
  • [5] Open superstring and noncommutative geometry
    Lee, T
    PHYSICS LETTERS B, 2000, 483 (1-3) : 277 - 283
  • [6] Gravitational waves in the spectral action of noncommutative geometry
    Nelson, William
    Ochoa, Joseph
    Sakellariadou, Mairi
    PHYSICAL REVIEW D, 2010, 82 (08):
  • [7] Non-associative geometry and the spectral action principle
    Shane Farnsworth
    Latham Boyle
    Journal of High Energy Physics, 2015
  • [8] Non-associative geometry and the spectral action principle
    Farnsworth, Shane
    Boyle, Latham
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07):
  • [9] Spectral noncommutative geometry and quantization
    Rovelli, C
    PHYSICAL REVIEW LETTERS, 1999, 83 (06) : 1079 - 1083
  • [10] Noncommutative geometry: The spectral aspect
    Connes, A
    QUANTUM SYMMETRIES: LXIVTH SESSION OF THE LES HOUCHES SUMMER SCHOOL, 1998, : 643 - 686