Visual Tracking using Spatial-Temporal Regularized Support Correlation Filters

被引:0
|
作者
Li, Binshan [1 ]
Liu, Chaorong [2 ]
Liu, Jie [3 ]
Gao, Huiling [1 ]
Song, Xuhui [1 ]
Liu, Weirong [1 ]
机构
[1] Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Peoples R China
[2] Lanzhou Univ Technol, Key Lab Gansu Adv Control Ind Proc, Lanzhou 730050, Peoples R China
[3] Lanzhou Univ Technol, Natl Demonstrat Ctr Expt Elect & Control Engn Edu, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1088/1742-6596/1169/1/012019
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Support Correlation Filters (SCFs) have recently shown great potentials in real-time visual tracking. However, most of existing SCF trackers learn appearance models using the information of current frame, and completely neglect inter-frame information. Besides, they still suffer from unwanted boundary effects. In this paper, we proposed a novel Spatial-Temporal Regularized Support Correlation Filter (STRSCF) model, which introduces the spatial weight and temporal regularization term into SCF model. In order to improve the tracking performances, we extend STRSCF to multi-dimensional feature space. In addition, an effective optimization algorithm is developed to solve our STRSCF model in closed form solution. The experimental results on OTB-13 demonstrate that the STRSCF tracker performs superiorly against several state-of-the-art trackers in terms of accuracy and speed.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking
    Li, Feng
    Tian, Cheng
    Zuo, Wangmeng
    Zhang, Lei
    Yang, Ming-Hsuan
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4904 - 4913
  • [2] Learning adaptive spatial-temporal regularized correlation filters for visual tracking
    Zhao, Jianwei
    Li, Yangxiao
    Zhou, Zhenghua
    [J]. IET IMAGE PROCESSING, 2021, 15 (08) : 1773 - 1785
  • [3] Learning background-aware and spatial-temporal regularized correlation filters for visual tracking
    Jianming Zhang
    Yaoqi He
    Wenjun Feng
    Jin Wang
    Neal N. Xiong
    [J]. Applied Intelligence, 2023, 53 : 7697 - 7712
  • [4] Visual Tracking via Spatial-Temporal Regularized Correlation Filters with Advanced State Estimation
    Tang, Zhao-Qian
    Arakawa, Kaoru
    [J]. 2020 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2020, : 1145 - 1149
  • [5] Learning background-aware and spatial-temporal regularized correlation filters for visual tracking
    Zhang, Jianming
    He, Yaoqi
    Feng, Wenjun
    Wang, Jin
    Xiong, Neal N.
    [J]. APPLIED INTELLIGENCE, 2023, 53 (07) : 7697 - 7712
  • [6] Visual tracking via confidence template updating spatial-temporal regularized correlation filters
    Mengquan Liang
    Xuedong Wu
    Siming Tang
    Zhiyu Zhu
    Yaonan Wang
    Qiang Zhang
    Baiheng Cao
    [J]. Multimedia Tools and Applications, 2024, 83 : 37053 - 37072
  • [7] Visual tracking via confidence template updating spatial-temporal regularized correlation filters
    Liang, Mengquan
    Wu, Xuedong
    Tang, Siming
    Zhu, Zhiyu
    Wang, Yaonan
    Zhang, Qiang
    Cao, Baiheng
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (12) : 37053 - 37072
  • [8] Learning Target Point Seeking Weights Spatial-Temporal Regularized Correlation Filters for Visual Tracking
    Jiang, Wen-Tao
    Wang, Zi-Min
    Zhang, Sheng-Chong
    Zhou, Zi-Qi
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (06) : 7667 - 7687
  • [9] Kalman Filter for Spatial-Temporal Regularized Correlation Filters
    Feng, Sheng
    Hu, Keli
    Fan, En
    Zhao, Liping
    Wu, Chengdong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3263 - 3278
  • [10] Augmenting cascaded correlation filters with spatial-temporal saliency for visual tracking
    Zhao, Dawei
    Xiao, Liang
    Fu, Hao
    Wu, Tao
    Xu, Xin
    Dai, Bin
    [J]. INFORMATION SCIENCES, 2019, 470 : 78 - 93