Parabolic obstacle problems, quasi-convexity and regularity

被引:0
|
作者
Athanasopoulos, Ioannis [1 ]
Caffarelli, Luis [2 ]
Milakis, Emmanouil [3 ]
机构
[1] Univ Crete, Dept Math, Iraklion 71409, Crete, Greece
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[3] Univ Cyprus, Dept Math & Stat, POB 20537, CY-1678 Nicosia, Cyprus
基金
美国国家科学基金会;
关键词
FREE-BOUNDARY; HOLDER CONTINUITY; TEMPERATURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a wide class of the so called Obstacle Problems of parabolic type it is shown how to improve the optimal regularity of the solution and as a consequence how to obtain space-time regularity of the corresponding free boundary.
引用
收藏
页码:781 / 825
页数:45
相关论文
共 50 条
  • [1] QUASI-CONVEXITY, STRICTLY QUASI-CONVEXITY AND PSEUDO-CONVEXITY OF COMPOSITE OBJECTIVE FUNCTIONS
    BEREANU, B
    [J]. REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1972, (NR-1): : 15 - &
  • [2] Quasi-convexity and shrinkwrapping
    Namazi, Hossein
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (04): : 2443 - 2478
  • [3] STRONG QUASI-CONVEXITY
    SILVERMAN, E
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (02) : 549 - 554
  • [4] k-quasi-convexity reduces to quasi-convexity
    Cagnetti, Filippo
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 : 673 - 708
  • [5] ON QUASI-CONVEXITY OF THE COST FUNCTION
    FARE, R
    LEHMIJOKI, U
    [J]. SCANDINAVIAN JOURNAL OF ECONOMICS, 1987, 89 (01): : 115 - 118
  • [6] FENCHEL DUALITY AND QUASI-CONVEXITY
    PENOT, JP
    VOLLE, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (13): : 371 - 374
  • [7] Optimal regularity for supercritical parabolic obstacle problems
    Ros-Oton, Xavier
    Torres-Latorre, Clara
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (03) : 1724 - 1765
  • [8] Holder regularity for degenerate parabolic obstacle problems
    Boegelein, Verena
    Lukkari, Teemu
    Scheven, Christoph
    [J]. ARKIV FOR MATEMATIK, 2017, 55 (01): : 1 - 39
  • [9] An algorithm for detecting Directional Quasi-Convexity
    Dullin, H
    Fassò, F
    [J]. BIT NUMERICAL MATHEMATICS, 2004, 44 (03) : 571 - 584
  • [10] ON QUASI-CONVEXITY OF THE ZERO UTILITY PRINCIPLE
    Chudziak, Jacek
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (05) : 749 - 754