Unsupervised Detection of Non-Technical Losses via Recursive Transform Learning

被引:6
|
作者
Sharma, Shalini [1 ]
Majumdar, Angshul [1 ]
机构
[1] Indraprastha Inst Informat Technol, Delhi, India
关键词
Transforms; Data models; Training; Power demand; Meters; Uncertainty; Time series analysis; Non-technical loss; unsupervised learning; dynamical system;
D O I
10.1109/TPWRD.2020.3029439
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter addresses the problem of detecting non-technical losses in an unsupervised fashion. Most prior studies in this area proposed supervised means (assumed the losses to be labeled); getting supervised data for such a problem seems impractical. For a practical scenario, non-technical losses should be detected in an unsupervised fashion. This work proposes a new dynamical model called recursive transform learning for online unsupervised detection of non-technical losses. Results show that our proposed method is better or at par compared to the state-of-the-art.
引用
收藏
页码:1241 / 1244
页数:4
相关论文
共 50 条
  • [1] Unsupervised Classification for Non-Technical Loss Detection
    Messinis, George M.
    Hatziargyriou, Nikos D.
    [J]. 2018 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC), 2018,
  • [2] Detection of Non-Technical Losses Using Smart Meter Data and Supervised Learning
    Mihaela Buzau, Madalina
    Tejedor-Aguilera, Javier
    Cruz-Romero, Pedro
    Gomez-Exposito, Antonio
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (03) : 2661 - 2670
  • [3] Non-Technical Electricity Losses
    Carr, Darragh
    Thomson, Murray
    [J]. ENERGIES, 2022, 15 (06)
  • [4] Unsupervised non-technical losses identification through optimum-path forest
    Passos Junior, Leandro Aparecido
    Oba Ramos, Caio Cesar
    Rodrigues, Douglas
    Pereira, Danillo Roberto
    de Souza, Andre Nunes
    Pontara da Costa, Kelton Augusto
    Papa, Joao Paulo
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2016, 140 : 413 - 423
  • [5] Monitoring technical losses to improve non-technical losses estimation and detection in LV distribution systems
    Henriques, H. O.
    Correa, R. L. S.
    Fortes, M. Z.
    Borba, B. S. M. C.
    Ferreira, V. H.
    [J]. MEASUREMENT, 2020, 161
  • [6] Detection of Non-technical Losses in Smart Distribution Networks: A Review
    Fragkioudaki, Anna
    Cruz-Romero, Pedro
    Gomez-Exposito, Antonio
    Biscarri, Jesus
    Jesus de Tellechea, Manuel
    Arcos, Angel
    [J]. TRENDS IN PRACTICAL APPLICATIONS OF SCALABLE MULTI-AGENT SYSTEMS, THE PAAMS COLLECTION, 2016, 473 : 43 - 54
  • [7] Increasing the Efficiency in Non-Technical Losses Detection in Utility Companies
    Guerrero, Juan I.
    Leon, Carlos
    Biscarri, Felix
    Monedero, Inigo
    Biscarri, Jesus
    Millan, Roco
    [J]. MELECON 2010: THE 15TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, 2010, : 136 - 141
  • [8] Non-technical losses detection employing adversarial domain adaptation
    Fei, Ke
    Li, Qi
    Ma, Zeju
    Gryazina, Elena
    Terzija, Vladimir
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 150
  • [9] Is Big Data Sufficient for a Reliable Detection of Non-Technical Losses?
    Glauner, Patrick
    Migliosi, Angelo
    Meira, Jorge Augusto
    Valtchev, Petko
    State, Radu
    Bettinger, Franck
    [J]. 2017 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM APPLICATION TO POWER SYSTEMS (ISAP), 2017,
  • [10] Solutions for detection of non-technical losses in the electricity grid: A review
    Viegas, Joaquim L.
    Esteves, Paulo R.
    Melicio, R.
    Mendes, V. M. F.
    Vieira, Susana M.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 80 : 1256 - 1268