Optimal domains for kernel operators via interpolation

被引:0
|
作者
Curbera, GP
Ricker, WJ
机构
[1] Univ Sevilla, Fac Matemat, Seville 41080, Spain
[2] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[3] Kathol Univ Eichstatt, Math Geog Fak, D-85072 Eichstatt, Germany
关键词
optimal domain; kernel operator; interpolation of operators; vector measure;
D O I
10.1002/1522-2616(200210)244:1<47::AID-MANA47>3.0.CO;2-B
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of finding optimal lattice domains for kernel operators with values in rearrangement invariant spaces on the interval [0,1] is considered. The techniques used are based on interpolation theory and integration with respect to C([0, 1])-valued measures.
引用
收藏
页码:47 / 63
页数:17
相关论文
共 50 条
  • [1] Complex Interpolation of Operators and Optimal Domains
    Ricardo del Campo
    Antonio Fernández
    Orlando Galdames
    Fernando Mayoral
    Francisco Naranjo
    [J]. Integral Equations and Operator Theory, 2014, 80 : 229 - 238
  • [2] Complex Interpolation of Operators and Optimal Domains
    del Campo, Ricardo
    Fernandez, Antonio
    Galdames, Orlando
    Mayoral, Fernando
    Naranjo, Francisco
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (02) : 229 - 238
  • [3] Optimal domains for kernel operators on [0, ∞) x [0, ∞)
    Delgado, Olvido
    [J]. STUDIA MATHEMATICA, 2006, 174 (02) : 131 - 145
  • [4] Banach lattices with the Fatou property and optimal domains of kernel operators
    Curbera, Guillermo P.
    Ricker, Werner J.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (02): : 187 - 204
  • [5] Maximin design on non hypercube domains and kernel interpolation
    Yves Auffray
    Pierre Barbillon
    Jean-Michel Marin
    [J]. Statistics and Computing, 2012, 22 : 703 - 712
  • [6] Maximin design on non hypercube domains and kernel interpolation
    Auffray, Yves
    Barbillon, Pierre
    Marin, Jean-Michel
    [J]. STATISTICS AND COMPUTING, 2012, 22 (03) : 703 - 712
  • [7] DOMAINS VIA APPROXIMATION OPERATORS
    Zou, Zhiwei
    Li, Qingguo
    Ho, Weng Kin
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2018, 14 (02)
  • [8] Optimal Domains for L0-valued Operators Via Stochastic Measures
    Guillermo P. Curbera
    Olvido Delgado
    [J]. Positivity, 2007, 11 : 399 - 416
  • [9] Optimal domains for L0-valued operators via stochastic measures
    Curbera, Guillermo P.
    Delgado, Olvido
    [J]. POSITIVITY, 2007, 11 (03) : 399 - 416
  • [10] Construction of aggregation operators for automated decision making via optimal interpolation and global optimization
    Beliakov, Gleb
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2007, 3 (02) : 193 - 208