A multi-start local search heuristic for ship scheduling - a computational study

被引:57
|
作者
Bronmo, Geir [1 ]
Christiansen, Marielle
Fagerholt, Kjetil
Nygreen, Bjorn
机构
[1] MARINTEK, Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Sect Managerial Econ & Operat Res, N-7034 Trondheim, Norway
[3] Norwegian Univ Sci & Technol, Dept Marine Technol, N-7034 Trondheim, Norway
关键词
maritime transportation; integer programming; set partitioning; routing;
D O I
10.1016/j.cor.2005.05.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a multi-start local search heuristic for a typical ship scheduling problem. A large number of initial solutions are generated by an insertion heuristic with random elements. The best initial solutions are improved by a local search heuristic that is split into a quick and an extended version. The quick local search is used to improve a given number of the best initial solutions. The extended local search heuristic is then used to further improve some of the best solutions found. The multi-start local search heuristic is compared with an optimization-based solution approach with respect to computation time and solution quality. The computational study shows that the multi-start local search method consistently returns optimal or near-optimal solutions to real-life instances of the ship scheduling problem within a reasonable amount of computation time. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:900 / 917
页数:18
相关论文
共 50 条
  • [1] A multi-start heuristic for the ship routing and scheduling of an oil company
    Yamashita, Denise
    Virginio da Silva, Bruno Jensen
    Morabito, Reinaldo
    Ribas, Paulo Cesar
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 136 : 464 - 476
  • [2] Efficient Multi-Start Strategies for Local Search Algorithms
    Gyoergy, Andras
    Kocsis, Levente
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2011, 41 : 407 - 444
  • [3] A multi-start local search heuristic for the Green Vehicle Routing Problem based on a multigraph reformulation
    Andelmin, J.
    Bartolini, E.
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2019, 109 : 43 - 63
  • [4] Empirical Study of Tabu Search, Simulated Annealing and Multi-Start in Fieldbus Scheduling
    Franco Vargas, Lucy Maria
    de Oliveira, Romulo Silva
    [J]. ETFA 2005: 10TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, VOL 2, PROCEEDINGS, 2005,
  • [5] Efficient Multi-start Strategies for Local Search Algorithms
    Kocsis, Levente
    Gyoergy, Andras
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, 2009, 5781 : 705 - 720
  • [6] A multi-start local search heuristic for an energy efficient VMs assignment on top of the OpenNebula cloud manager
    Kessaci, Yacine
    Melab, Nouredine
    Talbi, E-Ghazali
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2014, 36 : 237 - 256
  • [7] Stopping rule of multi-start local search for structural optimization
    Makoto Ohsaki
    Makoto Yamakawa
    [J]. Structural and Multidisciplinary Optimization, 2018, 57 : 595 - 603
  • [8] Stopping rule of multi-start local search for structural optimization
    Ohsaki, Makoto
    Yamakawa, Makoto
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (02) : 595 - 603
  • [9] A multi-start local search heuristic for the multi-period auto-carrier loading and transportation problem in Brazil
    Bonassa, Antonio Carlos
    da Cunha, Claudio Barbieri
    Isler, Cassiano Augusto
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 307 (01) : 193 - 211
  • [10] Multi-start iterated local search metaheuristic for the multi-mode resource-constrained project scheduling problem
    Ramos, Alfredo S.
    Olivares-Benitez, Elias
    Miranda-Gonzalez, Pablo A.
    [J]. EXPERT SYSTEMS, 2022, 39 (01)