LP regularity of the Dirichlet problem for elliptic equations with singular drift

被引:8
|
作者
Rios, Cristian [1 ]
机构
[1] Trinity Coll, Dept Math, Hartford, CT 06106 USA
关键词
Dirichlet problem; harmonic measure; absolute continuity; divergence; nondivergence; singular drift;
D O I
10.5565/PUBLMAT_50206_11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L-0 and L-1 be two elliptic operators in nondivergence form, with coefficients A(l) and drift terms b(l), l = 0, 1 satisfying sup vertical bar A(0) (Y) - A(1) (y)vertical bar(2) + delta (X)(2) vertical bar b(0) (Y) - b(1) (y)vertical bar(2)/delta(X) dX vertical bar Y-X vertical bar <= delta(X)/2 is a Carleson measure in a Lipschitz domain Omega subset of Rn+1, n >= 1, (here delta (X) = dist (X, partial derivative Omega)). If the harmonic measure d omega(L0) is an element of A infinity, then d omega(L1), is an element of A infinity. This is an analog to Theorem 2.17 in [8] for divergence form operators. As an application of this, a new approximation argument and known results we are able to extend the results in [10] for divergence form operators while obtaining totally new results for nondivergence form operators. The theorems are sharp in all cases.
引用
收藏
页码:475 / 507
页数:33
相关论文
共 50 条
  • [1] The Dirichlet problem for elliptic equations with drift terms
    Kenig, CE
    Pipher, J
    [J]. PUBLICACIONS MATEMATIQUES, 2001, 45 (01) : 199 - 217
  • [2] Dirichlet problem for noncoercive nonlinear elliptic equations with singular drift term in unbounded domains
    Di Gironimo, Patrizia
    Monsurro, Sara
    Zecca, Gabriella
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [3] The Dirichlet problem for singular elliptic equations with general nonlinearities
    Virginia De Cicco
    Daniela Giachetti
    Francescantonio Oliva
    Francesco Petitta
    [J]. Calculus of Variations and Partial Differential Equations, 2019, 58
  • [4] The Dirichlet problem for singular elliptic equations with general nonlinearities
    De Cicco, Virginia
    Giachetti, Daniela
    Oliva, Francescantonio
    Petitta, Francesco
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [5] The dirichlet problem for second order elliptic equations with singular data
    L. Caso
    M. Transirico
    [J]. Acta Mathematica Hungarica, 1997, 76 : 1 - 16
  • [6] The Dirichlet problem for second order elliptic equations with singular data
    Caso, L
    Transirico, M
    [J]. ACTA MATHEMATICA HUNGARICA, 1997, 76 (1-2) : 1 - 16
  • [7] THE DIRICHLET PROBLEM FOR POSSIBLY SINGULAR ELLIPTIC EQUATIONS WITH DEGENERATE COERCIVITY
    Durastanti, Riccardo
    Oliva, Francescantonio
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2024, 29 (5-6) : 339 - 388
  • [8] PARABOLIC AND ELLIPTIC EQUATIONS WITH SINGULAR OR DEGENERATE COEFFICIENTS: THE DIRICHLET PROBLEM
    Dong, Hongjie
    Phan, Tuoc
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (09) : 6611 - 6647
  • [9] ON THE REGULARITY UP TO THE BOUNDARY IN THE DIRICHLET PROBLEM FOR DEGENERATE ELLIPTIC-EQUATIONS
    BERGAMASCO, AP
    GERSZONOWICZ, JA
    PETRONILHO, G
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 313 (01) : 317 - 329
  • [10] Regularity in a singular biharmonic Dirichlet problem
    Olofsson, Anders
    [J]. MONATSHEFTE FUR MATHEMATIK, 2006, 148 (03): : 229 - 239