DECAS: a modern data-driven decision theory for big data and analytics

被引:37
|
作者
Elgendy, Nada [1 ]
Elragal, Ahmed [2 ]
Paivarinta, Tero [1 ]
机构
[1] Univ Oulu, Fac Informat Technol & Elect Engn, Oulu, Finland
[2] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Lulea, Sweden
关键词
Data-driven decision making; big data; analytics; automated decisions; decision theory; algorithmic decisions;
D O I
10.1080/12460125.2021.1894674
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Decisions continue to be important to researchers, organizations and societies. However, decision research requires re-orientation to attain the future of data-driven decision making, accommodating such emerging topics and information technologies as big data, analytics, machine learning, and automated decisions. Accordingly, there is a dire need for re-forming decision theories to encompass the new phenomena. This paper proposes a modern data-driven decision theory, DECAS, which extends upon classical decision theory by proposing three main claims: (1) (big) data and analytics (machine) should be considered as separate elements; (2) collaboration between the (human) decision maker and the analytics (machine) can result in a collaborative rationality, extending beyond the classically defined bounded rationality; and (3) meaningful integration of the classical decision making elements with data and analytics can lead to more informed, and possibly better, decisions. This paper elaborates the DECAS theory and clarifies the idea in relation to examples of data-driven decisions.
引用
收藏
页码:337 / 373
页数:37
相关论文
共 50 条
  • [1] Big Data Analytics in Education: A Data-Driven Literature Review
    Shabihi, Negar
    Kim, Mi Song
    [J]. IEEE 21ST INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES (ICALT 2021), 2021, : 154 - 156
  • [2] Smart Cities and Big Data Analytics: A Data-Driven Decision-Making Use Case
    Osman, Ahmed M. Shahat
    Elragal, Ahmed
    [J]. SMART CITIES, 2021, 4 (01): : 286 - 313
  • [3] A Data-Driven Framework for Business Analytics in the Context of Big Data
    Lu, Jing
    [J]. NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS, ADBIS 2018, 2018, 909 : 339 - 351
  • [4] Expert Review on Big Data Analytics Implementation Model in Data-driven Decision-Making
    Adrian, Cecilia
    Abdullah, Rusli
    Atan, Rodziah
    Jusoh, Yusmadi Yah
    [J]. 2018 FOURTH INTERNATIONAL CONFERENCE ON INFORMATION RETRIEVAL AND KNOWLEDGE MANAGEMENT (CAMP), 2018, : 13 - 17
  • [5] Advanced data analytics for enhancing building performances: From data-driven to big data-driven approaches
    Cheng Fan
    Da Yan
    Fu Xiao
    Ao Li
    Jingjing An
    Xuyuan Kang
    [J]. Building Simulation, 2021, 14 : 3 - 24
  • [6] Advanced data analytics for enhancing building performances: From data-driven to big data-driven approaches
    Fan, Cheng
    Yan, Da
    Xiao, Fu
    Li, Ao
    An, Jingjing
    Kang, Xuyuan
    [J]. BUILDING SIMULATION, 2021, 14 (01) : 3 - 24
  • [7] Data-driven techniques for temperature data prediction: big data analytics approach
    Oloyede, Adamson
    Ozuomba, Simeon
    Asuquo, Philip
    Olatomiwa, Lanre
    Longe, Omowunmi Mary
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (02)
  • [8] Data-driven techniques for temperature data prediction: big data analytics approach
    Adamson Oloyede
    Simeon Ozuomba
    Philip Asuquo
    Lanre Olatomiwa
    Omowunmi Mary Longe
    [J]. Environmental Monitoring and Assessment, 2023, 195
  • [9] Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems
    Moradi, Jalal
    Shahinzadeh, Hossein
    Nafisi, Hamed
    Marzband, Mousa
    Gharehpetian, Gevork B.
    [J]. 2020 14TH INTERNATIONAL CONFERENCE ON PROTECTION AND AUTOMATION OF POWER SYSTEMS (IPAPS), 2020, : 83 - 92
  • [10] A Survey on Data-driven Performance Tuning for Big Data Analytics Platforms
    Costa, Rogerio Luis de C.
    Moreira, Jose
    Pintor, Paulo
    dos Santos, Veronica
    Lifschitz, Sergio
    [J]. BIG DATA RESEARCH, 2021, 25