Lie group structures on quotient groups and universal complexifications for infinite-dimensional lie groups

被引:51
|
作者
Glöckner, H [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
关键词
D O I
10.1006/jfan.2002.3942
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the existence of Lie group structures on quotient groups and the existence of universal complexifications for the class of Baker Campbell-Hausdorff (BCH-) Lie groups, which subsumes all Banach-Lie groups and "linear" direct limit Lie groups, as well as the mapping groups C-K(r)(M, G):= {gamma is an element of C-r(M, G):\(M\K) = 1}, for every BCH-Lie group G, second countable finite-dimensional smooth manifold M, compact subset K of M, and 0less than or equal torless than or equal toinfinity. Also the corresponding test function groups D-r(M,G)=boolean ORK C-K(r)(M, G) are BCH-Lie groups. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:347 / 409
页数:63
相关论文
共 50 条