A BIAS CORRECTION FOR THE MINIMUM ERROR RATE IN CROSS-VALIDATION

被引:64
|
作者
Tibshirani, Ryan J. [1 ]
Tibshirani, Robert [1 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
来源
ANNALS OF APPLIED STATISTICS | 2009年 / 3卷 / 02期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Cross-validation; prediction error estimation; optimism estimation;
D O I
10.1214/08-AOAS224
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Tuning parameters in supervised learning problems are often estimated by cross-validation. The minimum value of the cross-validation error can be biased downward as an estimate of the test error at that same value of the tuning parameter. We propose a simple method for the estimation of this bias that uses information from the cross-validation process. As a result, it requires essentially no additional computation. We apply our bias estimate to a number of popular classifiers in various settings, and examine its performance.
引用
收藏
页码:822 / 829
页数:8
相关论文
共 50 条