Automatic detection of seafloor marine litter using towed camera images and deep learning

被引:45
|
作者
Politikos, Dimitris, V [1 ]
Fakiris, Elias [2 ]
Davvetas, Athanasios [3 ]
Klampanos, Iraklis A. [3 ]
Papatheodorou, George [2 ]
机构
[1] Hellen Ctr Marine Res, Inst Marine Biol Resources & Inland, Argyroupoli 16452, Greece
[2] Univ Patras, Dept Geol, Lab Marine Geol & Phys Oceanog, Patras 26504, Greece
[3] Natl Ctr Sci Res Demokritos, Inst Informat & Telecommun, Athens 15310, Greece
关键词
Seafloor marine litter; Object detection; Mask R-CNN; Deep learning; Aegean Sea; Mediterranean Sea; DEBRIS; MICROPLASTICS; INGESTION; FISH;
D O I
10.1016/j.marpolbul.2021.111974
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aerial and underwater imaging is being widely used for monitoring litter objects found at the sea surface, beaches and seafloor. However, litter monitoring requires a considerable amount of human effort, indicating the need for automatic and cost-effective approaches. Here we present an object detection approach that automat-ically detects seafloor marine litter in a real-world environment using a Region-based Convolution Neural Network. The neural network is trained on an imagery with 11 manually annotated litter categories and then evaluated on an independent part of the dataset, attaining a mean average precision score of 62%. The presence of other background features in the imagery (e.g., algae, seagrass, scattered boulders) resulted to higher number of predicted litter items compare to the observed ones. The results of the study are encouraging and suggest that deep learning has the potential to become a significant tool for automatically recognizing seafloor litter in surveys, accomplishing continuous and precise litter monitoring.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Litter Detection from Digital Images Using Deep Learning
    Liu J.
    Pan C.
    Yan W.Q.
    [J]. SN Computer Science, 4 (2)
  • [2] Automatic hyoid bone detection in fluoroscopic images using deep learning
    Zhenwei Zhang
    James L. Coyle
    Ervin Sejdić
    [J]. Scientific Reports, 8
  • [3] Automatic hyoid bone detection in fluoroscopic images using deep learning
    Zhang, Zhenwei
    Coyle, James L.
    Sejdic, Ervin
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [4] Automatic detection of hemorrhages on color fundus images using deep learning
    van Grinsven, Mark J. J. P.
    Venhuizen, Freerk
    van Ginneken, Bram
    Hoyng, Carel C. B.
    Theelen, Thomas
    Sanchez, Clara I.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [5] Robotic Detection of Marine Litter Using Deep Visual Detection Models
    Fulton, Michael
    Hong, Jungseok
    Islam, Md Jahidul
    Sattar, Junaed
    [J]. 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 5752 - 5758
  • [6] Automatic detection and quantification of floating marine macro-litter in aerial images: Introducing a novel deep learning approach connected to a web application in R
    Garcia-Garin, Odei
    Monleon-Getino, Toni
    Lopez-Brosa, Pere
    Borrell, Asuncion
    Aguilar, Alex
    Borja-Robalino, Ricardo
    Cardona, Luis
    Vighi, Morgana
    [J]. ENVIRONMENTAL POLLUTION, 2021, 273
  • [7] Automatic Detection of Oil Spills from SAR Images Using Deep Learning
    Patel, Krishna
    Bhatt, Chintan
    Corchado, Juan M.
    [J]. AMBIENT INTELLIGENCE-SOFTWARE AND APPLICATIONS-13TH INTERNATIONAL SYMPOSIUM ON AMBIENT INTELLIGENCE, 2023, 603 : 54 - 64
  • [8] Deep Learning for Automatic Defect Detection in PV Modules Using Electroluminescence Images
    Mazen, Fatma Mazen Ali
    Seoud, Rania Ahmed Abul
    Shaker, Yomna O.
    [J]. IEEE ACCESS, 2023, 11 : 57783 - 57795
  • [9] Automatic Detection of Nephrops norvegicus Burrows in Underwater Images Using Deep Learning
    Naseer, Atif
    Nava Baro, Enrique
    Khan, Sultan Daud
    Vila Gordillo, Yolanda
    [J]. 2020 GLOBAL CONFERENCE ON WIRELESS AND OPTICAL TECHNOLOGIES (GCWOT), 2020,
  • [10] Automatic detection of papilledema through fundus retinal images using deep learning
    Saba, Tanzila
    Akbar, Shahzad
    Kolivand, Hoshang
    Ali Bahaj, Saeed
    [J]. MICROSCOPY RESEARCH AND TECHNIQUE, 2021, 84 (12) : 3066 - 3077