Bi-clustering of Gene Expression Data Using Conditional Entropy

被引:0
|
作者
Olomola, Afolabi [1 ]
Dua, Sumeet [1 ]
机构
[1] Louisiana Tech Univ, DMRL, Dept Comp Sci, Ruston, LA 71270 USA
关键词
Gene expression; biclustering; conditional entropy;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The inherent sparseness of gene expression data and the rare exhibition of similar expression patterns across a wide range of conditions make traditional clustering techniques unsuitable for gene expression analysis. Biclustering methods currently used to identify correlated gene patterns based on a subset of conditions do not effectively mine constant, coherent, or overlapping biclusters, partially because they perform poorly in the presence of noise. In this paper, we present a new methodology (BiEntropy) that combines information entropy and graph theory techniques to identify co-expressed gene patterns that are relevant to a subset of the sample. Our goal is to discover different types of biclusters in the presence of noise and to demonstrate the Superiority of our method over existing methods in terms of discovering functionally enriched biclusters. We demonstrate the effectiveness of our method using both synthetic and real data.
引用
收藏
页码:244 / 254
页数:11
相关论文
共 50 条
  • [1] Bi-clustering Gene Expression Data Using Co-similarity
    Hussain, Syed Fawad
    [J]. ADVANCED DATA MINING AND APPLICATIONS, PT I, 2011, 7120 : 190 - 200
  • [2] A Sequential Gene Expression Data Bi-clustering Method: Clustering and Verification
    Zhang Yanjie
    Hu Zhanyi
    [J]. 2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL I, PROCEEDINGS, 2009, : 591 - +
  • [3] A bi-clustering framework for categorical data
    Pensa, RG
    Robardet, C
    Boulicaut, JF
    [J]. KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2005, 2005, 3721 : 643 - 650
  • [4] Bi-clustering of metabolic data using matrix factorization tools
    Gu, Quan
    Veselkov, Kirill
    [J]. METHODS, 2018, 151 : 12 - 20
  • [5] iBBiG: iterative binary bi-clustering of gene sets
    Gusenleitner, Daniel
    Howe, Eleanor A.
    Bentink, Stefan
    Quackenbush, John
    Culhane, Aedin C.
    [J]. BIOINFORMATICS, 2012, 28 (19) : 2484 - 2492
  • [6] Bi-clustering of Gene Expression Microarray using Coarse grained Parallel Genetic Algorithm(CgPGA) with Migration
    Laishram, Ayangleima
    Vipsita, Swati
    [J]. 2015 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2015,
  • [7] A Novel Clustering and Verification Based Microarray Data Bi-clustering Method
    Zhang, Yanjie
    Wang, Hong
    Hu, Zhanyi
    [J]. ADVANCES IN SWARM INTELLIGENCE, PT 2, PROCEEDINGS, 2010, 6146 : 611 - +
  • [8] A New Bi-clustering Approach Using Topological Maps
    Chaibi, Amine
    Lebbah, Mustapha
    Azzag, Hanane
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [9] On approximate balanced bi-clustering
    Ma, GX
    Peng, JM
    Wei, Y
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2005, 3595 : 661 - 670
  • [10] FunCC: A new bi-clustering algorithm for functional data with misalignment
    Galvani, Marta
    Torti, Agostino
    Menafoglio, Alessandra
    Vantini, Simone
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 160