Investigation of energy transport in DIII-D High-βP EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models

被引:76
|
作者
Pan, C. [1 ]
Staebler, G. M. [2 ]
Lao, L. L. [2 ]
Garofalo, A. M. [2 ]
Gong, X. [1 ]
Ren, Q. [1 ]
McClenaghan, J. [3 ]
Li, G. [1 ]
Ding, S. [1 ]
Qian, J. [1 ]
Wan, B. [1 ]
Xu, G. S. [1 ]
Solomon, W. [2 ]
Meneghini, O. [2 ]
Smith, S. P. [2 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Gen Atom, POB 85608, San Diego, CA 92168 USA
[3] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA
基金
中国国家自然科学基金;
关键词
high-beta(P); energy transport; EXB; Shafranov shif; PLASMA TRANSPORT; CONFINEMENT; SUPPRESSION; SHEAR;
D O I
10.1088/1741-4326/aa4ff8
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Energy transport analyses of the DIII-D high-beta(P) EAST-demonstration discharges have been performed using the TGYRO transport package with the TGLF turbulent and NEO neoclassical transport models under the OMFIT integrated modeling framework. Ion energy transport is shown to be dominated by neoclassical transport and ion temperature profiles predicted by TGYRO agree closely with the experimental measured profiles for these high-beta(P) discharges. Ion energy transport is largely insensitive to reductions in the ExB flow shear stabilization. The Shafranov shift is shown to play a role in the suppression of the ion turbulent energy transport below the neoclassical level. Electron turbulent energy transport is under-predicted by TGLF and a significant shortfall in the electron energy transport over the whole core plasma is found with TGLF predictions for these high-beta(P) discharges. TGYRO can successfully predict the experimental ion and electron temperature profiles by artificially increasing the saturated turbulence level for ETG driven modes used in TGLF.
引用
收藏
页数:11
相关论文
共 12 条
  • [1] Test of bootstrap current models using high-βp EAST-demonstration plasmas on DIII-D
    Ren, Q.
    Lao, L. L.
    Garofalo, A. M.
    Holcomb, C. T.
    Solomon, W. M.
    Belli, E. A.
    Smith, S. P.
    Meneghini, O.
    Qian, J.
    Li, G.
    Wan, B.
    Ding, S.
    Gong, X.
    Xu, G.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (02)
  • [2] Energy transport analysis of NSTX plasmas with the TGLF turbulent and NEO neoclassical transport models
    Avdeeva, G.
    Thome, K. E.
    Smith, S. P.
    Battaglia, D. J.
    Clauser, C. F.
    Guttenfelder, W.
    Kaye, S. M.
    Mcclenaghan, J.
    Meneghini, O.
    Odstrcil, T.
    Staebler, G.
    [J]. NUCLEAR FUSION, 2023, 63 (12)
  • [3] Shafranov shift bifurcation of turbulent transport in the high βp scenario on DIII-D
    McClenaghan, J.
    Garofalo, A. M.
    Staebler, M.
    Ding, S. Y.
    Gong, X.
    Qian, J.
    Huang, J.
    [J]. NUCLEAR FUSION, 2019, 59 (12)
  • [4] Transport and stability in sustained high qmin , high βN discharges on DIII-D
    Huang, J.
    Gong, X. Z.
    Jian, X.
    Qian, J. P.
    Zhang, X. J.
    Sun, P. J.
    Sun, Y. X.
    Ren, Q. L.
    Wang, L.
    Ding, R.
    Garofalo, A. M.
    Strait, E. J.
    Ding, S. Y.
    Wang, H. Q.
    Chen, X.
    Chrystal, C.
    Pinsker, R. I.
    Lohr, J. M.
    Choi, W.
    Hong, R. J.
    Rhodes, T.
    Hu, Q. M.
    Yan, Z.
    Mckee, G. R.
    Holcomb, C. T.
    [J]. NUCLEAR FUSION, 2024, 64 (05)
  • [5] Energy, particle and impurity transport in quiescent double barrier discharges in DIII-D
    West, WP
    Wade, MR
    Greenfield, CM
    Doyle, EJ
    Burrell, KH
    Brooks, NH
    Gohil, P
    Groebner, RJ
    Jackson, GL
    Kinsey, JE
    Lasnier, CJ
    Mandrekas, J
    McKee, GR
    Rhodes, TL
    Staebler, GM
    Wang, G
    Watkins, JG
    Zeng, L
    [J]. PHYSICS OF PLASMAS, 2002, 9 (05) : 1970 - 1980
  • [6] Validating the energy transport modeling of the DIII-D and EAST ramp up experiments using TSC
    Liu, Li
    Guo, Yong
    Chan, Vincent
    Mao, Shifeng
    Wang, Yifeng
    Pan, Chengkang
    Luo, Zhengping
    Zhao, Hailin
    Ye, Minyou
    [J]. NUCLEAR FUSION, 2017, 57 (06)
  • [7] Investigation of core transport changes in DIII-D discharges with off-axis T e profile peaks
    Xie, R.
    Austin, M. E.
    Gentle, K.
    Petty, C. C.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (03)
  • [8] Dependence of the impurity transport on the dominant turbulent regime in ELM-y H-mode discharges on the DIII-D tokamak
    Odstrcil, T.
    Howard, N. T.
    Sciortino, F.
    Chrystal, C.
    Holland, C.
    Hollmann, E.
    McKee, G.
    Thome, K. E.
    Wilks, T. M.
    [J]. PHYSICS OF PLASMAS, 2020, 27 (08)
  • [9] Fast-ion transport in qmin > 2, high-β steady-state scenarios on DIII-D
    Holcomb, C. T.
    Heidbrink, W. W.
    Ferron, J. R.
    Van Zeeland, M. A.
    Garofalo, A. M.
    Solomon, W. M.
    Gong, X.
    Mueller, D.
    Grierson, B.
    Bass, E. M.
    Collins, C.
    Park, J. M.
    Kim, K.
    Luce, T. C.
    Turco, F.
    Pace, D. C.
    Ren, Q.
    Podesta, M.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (05)
  • [10] Transport modeling of the DIII-D high βp scenario and extrapolations to ITER steady-state operation
    McClenaghan, J.
    Garofalo, A. M.
    Meneghini, O.
    Smith, S. P.
    Leuer, J. A.
    Staebler, G. M.
    Lao, L. L.
    Park, J. M.
    Ding, S. Y.
    Gong, X.
    Qian, J.
    [J]. NUCLEAR FUSION, 2017, 57 (11)