Conditional Linear Regression

被引:0
|
作者
Calderon, Diego [1 ]
Juba, Brendan [2 ]
Li, Zongyi [2 ]
Ruan, Lisa [3 ]
机构
[1] Univ Arkansas, Fayetteville, AR 72701 USA
[2] Washington Univ, St Louis, MO 63110 USA
[3] MIT, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Previous work in machine learning and statistics commonly focuses on building models that capture the vast majority of data, possibly ignoring a segment of the population as outliers. By contrast, we may be interested in finding a segment of the population for which we can find a linear rule capable of achieving more accurate predictions. We give an efficient algorithm for the conditional linear regression task, which is the joint task of identifying a significant segment of the population, described by a k-DNF, along with its linear regression fit.
引用
收藏
页码:8055 / 8056
页数:2
相关论文
共 50 条
  • [1] Conditional Linear Regression
    Calderon, Diego
    Juba, Brendan
    Li, Sirui
    Li, Zongyi
    Ruan, Lisa
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2164 - 2172
  • [2] Conditional Linear Regression for Heterogeneous Covariances
    Juba, Brendan
    Liang, Leda
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151 : 6182 - 6199
  • [3] Conditional prediction intervals for linear regression
    McCullagh, Peter
    Vovk, Vladimir
    Nouretdinov, Ilia
    Devetyarov, Dmitry
    Gammerman, Alex
    [J]. EIGHTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2009, : 131 - +
  • [4] Hierarchical linear regression models for conditional quantiles
    Tian Maozai
    Chen Gemai
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (12): : 1800 - 1815
  • [5] Hierarchical linear regression models for conditional quantiles
    TIAN Maozai & CHEN Gemai School of Statistics
    Department of Mathematics and Statistics
    [J]. Science China Mathematics, 2006, (12) : 1800 - 1815
  • [6] Hierarchical linear regression models for conditional quantiles
    Maozai Tian
    Gemai Chen
    [J]. Science in China Series A: Mathematics, 2006, 49 : 1800 - 1815
  • [7] CONDITIONAL TEST FOR ULTRAHIGH DIMENSIONAL LINEAR REGRESSION COEFFICIENTS
    Guo, Wenwen
    Zhong, Wei
    Duan, Sunpeng
    Cui, Hengjian
    [J]. STATISTICA SINICA, 2022, 32 (03) : 1381 - 1409
  • [8] Linear regression models under conditional independence restrictions
    Causeur, D
    Dhorne, T
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (03) : 637 - 650
  • [9] ESTIMATION OF A CONDITIONAL MEAN IN A LINEAR-REGRESSION MODEL
    BHOJ, DS
    AHSANULLAH, M
    [J]. BIOMETRICAL JOURNAL, 1993, 35 (07) : 791 - 799
  • [10] Conditional local influence in case-weights linear regression
    Poon, WY
    Poon, YS
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2001, 54 : 177 - 191