On the critical branching random walk III: The critical dimension

被引:2
|
作者
Zhu, Qingsan [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会;
关键词
Critical branching random walk; Tree-indexed random walk; Visiting probability; Harmonic measure; Range; RANGE;
D O I
10.1214/20-AIHP1071
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the critical branching random walk in the critical dimension, four. We provide the asymptotics of the probability of visiting a fixed finite set and the range of the critical branching random walk conditioned on the total number of offspring. We also prove that conditioned on visiting a finite set, the first visiting point converges in distribution, when the starting point tends to infinity.
引用
收藏
页码:73 / 93
页数:21
相关论文
共 50 条
  • [1] Branching random walk with a critical branching part
    Kesten, H
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (04) : 921 - 962
  • [2] Critical survival barrier for branching random walk
    Liu, Jingning
    Zhang, Mei
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (06) : 1259 - 1280
  • [3] On the maximal displacement of critical branching random walk
    Lalley, Steven P.
    Shao, Yuan
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2015, 162 (1-2) : 71 - 96
  • [4] On the maximal displacement of critical branching random walk
    Steven P. Lalley
    Yuan Shao
    [J]. Probability Theory and Related Fields, 2015, 162 : 71 - 96
  • [5] Branching random walk with selection at critical rate
    Mallein, Bastien
    [J]. BERNOULLI, 2017, 23 (03) : 1784 - 1821
  • [6] Critical branching random walk in an IID environment
    Englaender, Janos
    Sieben, Nandor
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2011, 17 (02): : 169 - 193
  • [7] Critical survival barrier for branching random walk
    Jingning Liu
    Mei Zhang
    [J]. Frontiers of Mathematics in China, 2019, 14 : 1259 - 1280
  • [8] CRITICAL DIMENSION FOR A MODEL OF BRANCHING IN A RANDOM MEDIUM
    DAWSON, DA
    FLEISCHMANN, K
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (03): : 315 - 334
  • [9] The critical branching random walk in a random environment dies out
    Garet, Olivier
    Marchand, Regine
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 15
  • [10] The critical barrier for the survival of branching random walk with absorption
    Jaffuel, Bruno
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (04): : 989 - 1009