Optimal Power Flow of Power Systems Using Hybrid Firefly and Particle Swarm Optimization Technique

被引:0
|
作者
Shaheen, Mohamed A. M. [1 ]
Mekhamer, S. F. [2 ]
Hasanien, Hany M. [3 ]
Talaat, Hossam E. A. [2 ]
机构
[1] Ain Shams Univ, Cairo, Egypt
[2] Future Univ Egypt, Elect Engn Dept, Cairo, Egypt
[3] Ain Shams Univ, Elect Power & Machines Dept, Cairo, Egypt
关键词
optimal power flow problem; electrical power systems; optimization;
D O I
10.1109/mepcon47431.2019.9008191
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a new endeavor of using the Hybrid Firefly and Particle Swarm Optimization (HFPSO) technique in tackling the optimal power flow (OPF) problem for electric power networks. The fuel cost optimization represents the main target considering the system constraints. The decision variable of the OPF problem is chosen to be the generators output real power. The HFPSO technique is chosen to optimize the objective function and to determine the optimal solutions of the problem. Many IEEE test systems are included in this study to assure the soundness of the introduced technique such as the IEEE 14-bus, 30-bus, and 57-bus grids. To acquire a sensible outcome, actual load curves are taken into account during the examination. Simulation results are examined then investigated. They show the appropriateness and privilege of the presented HFPSO -based OPF problem over the genetic algorithm (GA) and the particle swarm optimization (PSO).
引用
收藏
页码:232 / 237
页数:6
相关论文
共 50 条
  • [1] Optimal power flow using hybrid firefly and particle swarm optimization algorithm
    Khan, Abdullah
    Hizam, Hashim
    Wahab, Noor Izzri bin Abdul
    Othman, Mohammad Lutfi
    [J]. PLOS ONE, 2020, 15 (08):
  • [2] Optimal Power Flow and Interline Power Flow Controllers using Particle Swarm Optimization Technique
    Mohamed, Khalid H.
    Rao, K. S. Rama
    Hasan, Khairul Nisak Bt Md
    [J]. TENCON 2009 - 2009 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2009, : 704 - 709
  • [3] Optimal Power Flow in Power Networks with TCSC Using Particle Swarm Optimization Technique
    Monal, Patil
    Heistrene, Leena
    Pandya, Vivek
    [J]. ADVANCES IN ELECTRIC POWER AND ENERGY INFRASTRUCTURE, 2020, 608 : 91 - 101
  • [4] Optimal power flow using particle swarm optimization
    Abido, MA
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2002, 24 (07) : 563 - 571
  • [5] Optimal Power Flow Using Particle Swarm Optimization of Renewable Hybrid Distributed Generation
    Khaled, Usama
    Eltamaly, Ali M.
    Beroual, Abderrahmane
    [J]. ENERGIES, 2017, 10 (07):
  • [6] Dynamic optimal power flow using hybrid particle swarm optimization and simulated annealing
    Niknam, Taher
    Narimani, Mohammad Rasoul
    Jabbari, Masoud
    [J]. INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2013, 23 (07): : 975 - 1001
  • [7] Optimal Power Flow Using Iteration Particle Swarm Optimization
    Ghanizadeh, Tohid
    Babaei, Ebrahim
    [J]. 2012 IEEE 5TH INDIA INTERNATIONAL CONFERENCE ON POWER ELECTRONICS (IICPE 2012), 2012,
  • [8] Power systems operation using particle swarm optimization technique
    Abou El-Ela, A. A.
    Fetouh, T.
    Bishr, M. A.
    Saleh, R. A. F.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2008, 78 (11) : 1906 - 1913
  • [9] Optimal Power Flow Using a Hybrid Optimization Algorithm of Particle Swarm Optimization and Gravitational Search Algorithm
    Radosavljevic, Jordan
    Klimenta, Dardan
    Jevtic, Miroljub
    Arsic, Nebojsa
    [J]. ELECTRIC POWER COMPONENTS AND SYSTEMS, 2015, 43 (17) : 1958 - 1970
  • [10] Optimal Power Flow Considering Intermittent Wind Power Using Particle Swarm Optimization
    Shilaja, C.
    Ravi, K.
    [J]. INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2016, 6 (02): : 504 - 509