Equivariant holomorphic Morse inequalities .1. A heat kernel proof

被引:0
|
作者
Mathai, V
Wu, SY
机构
[1] INT CTR THEORET PHYS,TRIESTE,ITALY
[2] MATH SCI RES INST,BERKELEY,CA 94720
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume that the circle group acts holomorphically on a compact Kahler manifold with isolated fixed points and that the action can be lifted holomorphically to a holomorphic vector bundle. We use some techniques developed by Bismut and Lebeau to give a heat kernel proof of the equivariant holomorphic Morse inequalities, which, first obtained by Witten using a different argument, produce bounds on the multiplicities of weights occurring in the twisted Dolbeault cohomologies in terms of the data of the fixed points.
引用
收藏
页码:78 / 98
页数:21
相关论文
共 50 条
  • [1] HEAT KERNEL AND HOLOMORPHIC MORSE INEQUALITIES FOR A LINE-BUNDLE WITH DEGENERATE CURVATURE
    BOUCHE, T
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 1992, 116 (02): : 167 - 183
  • [2] On Bergman kernel functions and weak holomorphic Morse inequalities
    Li, Xiaoshan
    Shao, Guokuan
    Wang, Huan
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (05)
  • [3] On Bergman kernel functions and weak holomorphic Morse inequalities
    Xiaoshan Li
    Guokuan Shao
    Huan Wang
    [J]. Analysis and Mathematical Physics, 2023, 13
  • [4] Equivariant Holomorphic Morse Inequalities III: Non-isolated Fixed Points
    S. Wu
    W. Zhang
    [J]. Geometric & Functional Analysis GAFA, 1998, 8 : 149 - 178
  • [5] Equivariant holomorphic Morse inequalities III: Non-isolated fixed points
    Wu, SY
    Zhang, WP
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (01) : 149 - 178
  • [6] SINGULAR HOLOMORPHIC MORSE INEQUALITIES
    BONAVERO, L
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (12): : 1163 - 1166
  • [7] Holomorphic Morse inequalities for orbifolds
    Puchol, Martin
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2018, 289 (3-4) : 1237 - 1260
  • [8] Holomorphic Morse inequalities for orbifolds
    Martin Puchol
    [J]. Mathematische Zeitschrift, 2018, 289 : 1237 - 1260
  • [9] Analytic approach to S 1-equivariant Morse inequalities
    Zadeh, Mostafa E.
    Moghadasi, Reza
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (07): : 3059 - 3082
  • [10] SEMI-CLASSICAL HEAT KERNEL ASYMPTOTICS AND MORSE INEQUALITIES
    Chen, Eric Jian-Ting
    [J]. BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2023, 18 (04): : 365 - 418