HIDA FAMILIES AND p-ADIC TRIPLE PRODUCT L-FUNCTIONS

被引:0
|
作者
Hsieh, Ming-Lun [1 ,2 ]
机构
[1] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[2] Natl Ctr Theoret Sci, Taipei, Taiwan
关键词
AUTOMORPHIC L-FUNCTIONS; HECKE ALGEBRAS; TRILINEAR FORMS; SPECIAL VALUES; MOD L; REPRESENTATIONS; PERIODS; GL(2); POINTS; CURVES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct the three-variable triple product L-functionsattached to Hida families of elliptic nowforms and prove the explicit interpolation formulae at all critical specializations by establishing explicit Ichino's formulae for the trilinear period integrals of automorphic forms. Our formulae, perfectly fit the conjectural shape of p-adic L-functions predicted by Coates and Perrin-Riou. As an application, we prove the factorization of certain unbalanced p-adic triple product L-functions into a product of anticyclotomic p-adic L-functions for modular forms. By this factorization, we obtain a construction of the square root of the anticyclotomic p-adic L-functions for elliptic curves in the definite case via the diagonal cycle Euler system a la Darmon and Rotger and obtain a Greenberg-Stevens style proof of anticyclotomic exceptional zero conjecture for elliptic curves due to Bertolini and Daimon.
引用
收藏
页码:411 / 532
页数:122
相关论文
共 50 条
  • [1] p-ADIC L-FUNCTIONS AND THE GEOMETRY OF HIDA FAMILIES
    KRAMER-MILLER, Joe
    [J]. ANNALES DE L INSTITUT FOURIER, 2022, 72 (02) : 727 - 770
  • [2] An explicit comparison of anticyclotomic p-adic L-functions for Hida families
    Kim, Chan-Ho
    Longo, Matteo
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (09) : 2021 - 2050
  • [3] TRIPLE PRODUCT p-ADIC L-FUNCTIONS ASSOCIATED TO FINITE SLOPE p-ADIC FAMILIES OF MODULAR FORMS
    Andreatta, Fabrizio
    Iovita, Adrian
    [J]. DUKE MATHEMATICAL JOURNAL, 2021, 170 (09) : 1989 - 2083
  • [4] Triple product p-adic L-functions for balanced weights
    Greenberg, Matthew
    Seveso, Marco Adamo
    [J]. MATHEMATISCHE ANNALEN, 2020, 376 (1-2) : 103 - 176
  • [5] Triple product p-adic L-functions for balanced weights
    Matthew Greenberg
    Marco Adamo Seveso
    [J]. Mathematische Annalen, 2020, 376 : 103 - 176
  • [6] SEVERAL VARIABLES p-ADIC L-FUNCTIONS FOR HIDA FAMILIES OF HILBERT MODULAR FORMS
    Ochiai, Tadashi
    [J]. DOCUMENTA MATHEMATICA, 2012, 17 : 807 - 849
  • [7] On exceptional zeros of Garrett–Hida p-adic L-functions
    Massimo Bertolini
    Marco Adamo Seveso
    Rodolfo Venerucci
    [J]. Annales mathématiques du Québec, 2022, 46 : 303 - 324
  • [8] Controlling λ-invariants for the double and triple product p-adic L-functions
    Delbourgo, Daniel
    Gilmore, Hamish
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2021, 33 (03): : 732 - 778
  • [9] On exceptional zeros of Garrett-Hida p-adic L-functions
    Bertolini, Massimo
    Seveso, Marco Adamo
    Venerucci, Rodolfo
    [J]. ANNALES MATHEMATIQUES DU QUEBEC, 2022, 46 (02): : 303 - 324
  • [10] P-adic L-functions in universal deformation families
    Loeffler, David
    [J]. ANNALES MATHEMATIQUES DU QUEBEC, 2023, 47 (01): : 117 - 137