Statistical learning theory and stochastic optimization

被引:0
|
作者
Catoni, Olivier [1 ]
机构
[1] Univ Paris 06, CNRS, UMR 7599, Lab Probabilites & Modeles Aleatoires, F-75252 Paris 05, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / +
页数:266
相关论文
共 50 条
  • [1] STOCHASTIC OPTIMIZATION FOR COUPLED TENSOR DECOMPOSITION WITH APPLICATIONS IN STATISTICAL LEARNING
    Ibrahim, Shahana
    Fu, Xiao
    [J]. 2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 300 - 304
  • [2] Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization
    Golovin, Daniel
    Krause, Andreas
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2011, 42 : 427 - 486
  • [3] Revisiting statistical learning theory for uncertain feasibility and optimization problems
    Alamo, T.
    Tempo, R.
    Camacho, E. F.
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 3776 - +
  • [5] EXTENSION OF USUAL MODEL IN STATISTICAL DECISION-THEORY WITH APPLICATIONS TO STOCHASTIC OPTIMIZATION PROBLEMS
    BALDER, EJ
    [J]. ADVANCES IN APPLIED PROBABILITY, 1978, 10 (02) : 325 - 326
  • [6] Stochastic Optimization: Theory and Applications
    Wang, Bin
    Najjar, Lotfollah
    Xiong, Neal N.
    Chen, Rung Ching
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [7] PROBABILITY LEARNING IN STATISTICAL LEARNING THEORY
    FEICHTINGER, G
    [J]. METRIKA, 1971, 18 (01) : 35 - 55
  • [8] Complete Statistical Theory of Learning (Learning Using Statistical Invariants)
    Vapnik, Vladimir
    Izmailov, Rauf
    [J]. CONFORMAL AND PROBABILISTIC PREDICTION AND APPLICATIONS, VOL 128, 2020, 128 : 4 - 40
  • [9] Rethinking statistical learning theory: learning using statistical invariants
    Vapnik, Vladimir
    Izmailov, Rauf
    [J]. MACHINE LEARNING, 2019, 108 (03) : 381 - 423
  • [10] Rethinking statistical learning theory: learning using statistical invariants
    Vladimir Vapnik
    Rauf Izmailov
    [J]. Machine Learning, 2019, 108 : 381 - 423