Improved Adaptive Kalman Filter With Unknown Process Noise Covariance

被引:0
|
作者
Ma, Jirong [1 ,2 ]
Lan, Hua [1 ,2 ]
Wang, Zengfu [1 ,2 ]
Wang, Xuezhi [3 ]
Pan, Quan [1 ,2 ]
Moran, Bill [4 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian, Shaanxi, Peoples R China
[2] Minist Educ, Key Lab Informat Fus Technol, Xian, Shaanxi, Peoples R China
[3] RMIT Univ, Sch Engn, Melbourne, Vic, Australia
[4] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic, Australia
基金
中国国家自然科学基金;
关键词
Adaptive filtering; unknown process noise covariance; variational Bayesian; conjugate priors;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the joint recursive estimation of the dynamic state and the time-varying process noise covariance for a linear state space model. The conjugate prior on the process noise covariance, the inverse Wishart distribution, provides a latent variable. A variational Bayesian inference framework is then adopted to iteratively estimate the posterior density functions of the dynamic state, process noise covariance and the introduced latent variable. The performance of the algorithm is demonstrated with simulated data in a target tracking application.
引用
收藏
页码:2054 / 2058
页数:5
相关论文
共 50 条
  • [1] An adaptive Kalman filter estimating process noise covariance
    Wang, Hairong
    Deng, Zhihong
    Feng, Bo
    Ma, Hongbin
    Xia, Yuanqing
    [J]. NEUROCOMPUTING, 2017, 223 : 12 - 17
  • [2] Black box variational inference to adaptive kalman filter with unknown process noise covariance matrix
    Xu, Hong
    Duan, Keqing
    Yuan, Huadong
    Xie, Wenchong
    Wang, Yongliang
    [J]. SIGNAL PROCESSING, 2020, 169
  • [3] A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices
    Huang, Yulong
    Zhang, Yonggang
    Wu, Zhemin
    Li, Ning
    Chambers, Jonathon
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (02) : 594 - 601
  • [4] Adaptive Choice of Process Noise Covariance in Kalman Filter Using Measurement Matrices
    Takayama, Yoji
    Urakubo, Takateru
    Tamaki, Hisashi
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2024, 32 (03) : 934 - 944
  • [5] Adaptive Unscented Kalman Filter for Target Tracking with Unknown Time-Varying Noise Covariance
    Ge, Baoshuang
    Zhang, Hai
    Jiang, Liuyang
    Li, Zheng
    Butt, Maaz Mohammed
    [J]. SENSORS, 2019, 19 (06)
  • [6] Flexible polarization demultiplexing method based on an adaptive process noise covariance Kalman filter
    Ge, Jun
    Yan, Lianshan
    Yi, Anlin
    Pan, Yan
    Jiang, Lin
    Dai, Liangliang
    Pan, Wei
    Luo, Bin
    [J]. CHINESE OPTICS LETTERS, 2018, 16 (06)
  • [7] A novel variational Bayesian adaptive Kalman filter with mismatched process noise covariance matrix
    Liu, Xinrui
    Xu, Hong
    Zheng, Daikun
    Quan, Yinghui
    [J]. IET RADAR SONAR AND NAVIGATION, 2023, 17 (06): : 967 - 977
  • [8] Flexible polarization demultiplexing method based on an adaptive process noise covariance Kalman filter
    葛军
    闫连山
    易安林
    盘艳
    蒋林
    代亮亮
    潘炜
    罗斌
    [J]. Chinese Optics Letters, 2018, 16 (06) : 23 - 27
  • [9] Detection of power quality disturbances using an adaptive process noise covariance Kalman filter
    Xi, Yanhui
    Li, Zewen
    Zeng, Xiangjun
    Tang, Xin
    Liu, Qiao
    Xiao, Hui
    [J]. DIGITAL SIGNAL PROCESSING, 2018, 76 : 34 - 49
  • [10] The Selection of Process Noise Covariance Q and Measurement Noise Covariance R on Kalman Filter
    Wei chao-yi
    Ye Shu-jian
    Li Xu-guang
    Xie Mei-zhi
    Yi Feng-yan
    [J]. APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 4342 - 4345