CRAT-Pred: Vehicle Trajectory Prediction with Crystal Graph Convolutional Neural Networks and Multi-Head Self-Attention

被引:24
|
作者
Schmidt, Julian [1 ,2 ]
Jordan, Julian [1 ]
Gritschneder, Franz [1 ]
Dietmayer, Klaus [2 ]
机构
[1] Mercedes Benz AG, R&D, Stuttgart, Germany
[2] Ulm Univ, Inst Measurement Control & Microtechnol, Ulm, Germany
关键词
D O I
10.1109/ICRA46639.2022.9811637
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Predicting the motion of surrounding vehicles is essential for autonomous vehicles, as it governs their own motion plan. Current state-of-the-art vehicle prediction models heavily rely on map information. In reality, however, this information is not always available. We therefore propose CRATPred, a multi-modal and non-rasterization-based trajectory prediction model, specifically designed to effectively model social interactions between vehicles, without relying on map information. CRAT-Pred applies a graph convolution method originating from the field of material science to vehicle prediction, allowing to efficiently leverage edge features, and combines it with multi-head self-attention. Compared to other map-free approaches, the model achieves state-of-the-art performance with a significantly lower number of model parameters. In addition to that, we quantitatively show that the self-attention mechanism is able to learn social interactions between vehicles, with the weights representing a measurable interaction score. The source code is publicly available(3).
引用
收藏
页码:7799 / 7805
页数:7
相关论文
共 50 条
  • [1] Enhanced Multi-Head Self-Attention Graph Neural Networks for Session-based Recommendation
    Pan, Wenhao
    Yang, Kai
    [J]. ENGINEERING LETTERS, 2022, 30 (01) : 37 - 44
  • [2] Incorporating temporal multi-head self-attention convolutional networks and LightGBM for indoor air quality prediction
    Lu, Yifeng
    Wang, Jinyong
    Wang, Dongsheng
    Yoo, Changkyoo
    Liu, Hongbin
    [J]. APPLIED SOFT COMPUTING, 2024, 157
  • [3] Neural News Recommendation with Multi-Head Self-Attention
    Wu, Chuhan
    Wu, Fangzhao
    Ge, Suyu
    Qi, Tao
    Huang, Yongfeng
    Xie, Xing
    [J]. 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 6389 - 6394
  • [4] Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification
    Luwei Xiao
    Xiaohui Hu
    Yinong Chen
    Yun Xue
    Bingliang Chen
    Donghong Gu
    Bixia Tang
    [J]. Multimedia Tools and Applications, 2022, 81 : 19051 - 19070
  • [5] Multi-head self-attention based gated graph convolutional networks for aspect-based sentiment classification
    Xiao, Luwei
    Hu, Xiaohui
    Chen, Yinong
    Xue, Yun
    Chen, Bingliang
    Gu, Donghong
    Tang, Bixia
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (14) : 19051 - 19070
  • [6] Multi-Head Attention based Probabilistic Vehicle Trajectory Prediction
    Kim, Hayoung
    Kim, Dongchan
    Kim, Gihoon
    Cho, Jeongmin
    Huh, Kunsoo
    [J]. 2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 1720 - 1725
  • [7] MSASGCN : Multi-Head Self-Attention Spatiotemporal Graph Convolutional Network for Traffic Flow Forecasting
    Cao, Yang
    Liu, Detian
    Yin, Qizheng
    Xue, Fei
    Tang, Hengliang
    [J]. JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [8] Convolutional multi-head self-attention on memory for aspect sentiment classification
    Zhang, Yaojie
    Xu, Bing
    Zhao, Tiejun
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (04) : 1038 - 1044
  • [9] Neural Linguistic Steganalysis via Multi-Head Self-Attention
    Jiao, Sai-Mei
    Wang, Hai-feng
    Zhang, Kun
    Hu, Ya-qi
    [J]. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2021, 2021 (2021)
  • [10] Drug-Target Interaction Prediction Using Multi-Head Self-Attention and Graph Attention Network
    Cheng, Zhongjian
    Yan, Cheng
    Wu, Fang-Xiang
    Wang, Jianxin
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (04) : 2208 - 2218