Effects of Influent Organic Loading Rates and Electrode Locations on the Electrogenesis Capacity of Constructed Wetland-Microbial Fuel Cell Systems

被引:17
|
作者
Xu, Dan [1 ,2 ]
Xiao, En-Rong [2 ]
Xu, Peng [2 ,3 ]
Zhou, Yin [2 ,3 ]
Zhou, Qiao-Hong [2 ]
Xu, Dong [2 ]
Wu, Zhen-Bin [2 ]
机构
[1] Wuhan Univ Technol, Coll Resources & Environm Engn, Wuhan 430070, Peoples R China
[2] Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan 430072, Peoples R China
[3] Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
constructed wetland; microbial fuel cell; power density; electrode location; Canna indica var. flava; WASTE-WATER TREATMENT; ELECTRICITY PRODUCTION; POWER OUTPUT; AZO-DYE; PERFORMANCE; GENERATION; RHIZOSPHERE; TECHNOLOGY; PROGRESS; ENERGY;
D O I
10.1002/ep.12481
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Three novel constructed wetland-microbial fuel cells (CW-MFCs), based on electrode location, were developed for wastewater treatment and sustainable electricity production by embedding a MFC into a CW system. In the three CW-MFCs, electrodes were placed in different locations, including bottom anode-rhizosphere cathode CW-MFC (BA-RC-CW-MFC), rhizosphere anode-air cathode CW-MFC (RA-AC-CW-MFC), and bottom anode-air cathode CW-MFC (BA-AC-CW-MFC), to investigate the combined effects of organic loading rates (OLRs) and reactor configurations on the electrogenesis capacity of the hybrid system. All the systems operated continuously to treat five types of synthetic wastewater with increasing OLRs: 9.2, 18.4, 27.6, 55.2, and 92.0 g chemical oxygen demand (COD) m(-2) d(-1). The BA-RC-CW-MFC failed to produce electricity at any OLR, whereas the maximum power densities of 0.79 +/- 0.01 and 10.77 +/- 0.52 mW m(-2) were achieved in the RA-AC-CW-MFC with 18.4 g COD m(-2) d(-1) influent OLR and in the BA-AC-CW-MFC with 27.6 g COD m(-2) d(-1) influent OLR, respectively. The coulombic efficiencies of the RA-AC-CW-MFC and BA-AC-CW-MFC decreased gradually with the increase in influent OLRs. (C) 2016 American Institute of Chemical Engineers Environ Prog, 36: 435-441, 2017
引用
收藏
页码:435 / 441
页数:7
相关论文
共 50 条
  • [1] Effects of influent COD/TN ratio on nitrogen removal in integrated constructed wetland-microbial fuel cell systems
    Wang, Xiaoou
    Tian, Yimei
    Liu, Hong
    Zhao, Xinhua
    Wu, Qing
    [J]. BIORESOURCE TECHNOLOGY, 2019, 271 : 492 - 495
  • [2] The salinity effects on the performance of a constructed wetland-microbial fuel cell
    Villasenor Camacho, J.
    Rodriguez Romero, L.
    Fernandez Marchante, C. M.
    Fernandez Morales, F. J.
    Rodrigo Rodrigo, M. A.
    [J]. ECOLOGICAL ENGINEERING, 2017, 107 : 1 - 7
  • [3] The role of microbial electrogenesis in regulating methane and nitrous oxide emissions from constructed wetland-microbial fuel cell
    Liu, Shentan
    Xue, Hongpu
    Wang, Mixue
    Feng, Xiaojuan
    Lee, Hyung-Sool
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (63) : 27279 - 27292
  • [4] Enhanced Swine Wastewater Treatment by Constructed Wetland-Microbial Fuel Cell Systems
    Zhang, Yun
    Liu, Feng
    Lin, Yidong
    Sun, Lei
    Guo, Xinru
    Yang, Shuai
    He, Jinlong
    [J]. WATER, 2022, 14 (23)
  • [5] Biorefractory wastewater degradation in the cathode of constructed wetland-microbial fuel cell and the study of the electrode performance
    Fang, Zhou
    Cao, Xian
    Li, Xuexiao
    Wang, Hui
    Li, Xianning
    [J]. INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2018, 129 : 1 - 9
  • [6] Optimizing the performance of organics and nutrient removal in constructed wetland-microbial fuel cell systems
    Wang, Xiaoou
    Tian, Yimei
    Liu, Hong
    Zhao, Xinhua
    Peng, Sen
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 653 : 860 - 871
  • [7] Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell
    Xu, Fei
    Cao, Fu-qian
    Kong, Qiang
    Zhou, Lu-lu
    Yuan, Qing
    Zhu, Ya-jie
    Wang, Qian
    Du, Yuan-da
    Wang, Zhi-de
    [J]. CHEMICAL ENGINEERING JOURNAL, 2018, 339 : 479 - 486
  • [8] Seasonal variations of pollutants removal and microbial activity in integrated constructed wetland-microbial fuel cell systems
    Wang, Xiaoou
    Tian, Yimei
    [J]. WATER REUSE, 2021, 11 (02) : 312 - 328
  • [9] Wetland plants selection and electrode optimization for constructed wetland-microbial fuel cell treatment of Cr(VI)-containing wastewater
    Liu, Shentan
    Lu, Feifan
    Qiu, Dengfei
    Feng, Xiaojuan
    [J]. JOURNAL OF WATER PROCESS ENGINEERING, 2022, 49
  • [10] Electricity production and the analysis of the anode microbial community in a constructed wetland-microbial fuel cell
    Wang, Guozhen
    Guo, Yating
    Cai, Jiaying
    Wen, Hongyu
    Mao, Zhen
    Zhang, Hao
    Wang, Xin
    Ma, Lei
    Zhu, Mengqin
    [J]. RSC ADVANCES, 2019, 9 (37) : 21460 - 21472