Bayesian analysis of hierarchical linear mixed modeling using the multivariate t distribution

被引:42
|
作者
Lin, Tsung I. [1 ]
Lee, Jack C.
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
[2] Natl Chiao Tung Univ, Inst Stat, Hsinchu 300, Taiwan
[3] Natl Chiao Tung Univ, Grad Inst Finance, Hsinchu 300, Taiwan
关键词
autoregressive process; Bayesian prediction; Markov chain Monte Carlo; missing values; random effects; t linear mixed models;
D O I
10.1016/j.jspi.2005.12.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents a fully Bayesian approach to modeling incomplete longitudinal data using the t linear mixed model with AR(p) dependence. Markov chain Monte Carlo (MCMC) techniques are implemented for computing posterior distributions of parameters. To facilitate the computation, two types of auxiliary indicator matrices are incorporated into the model. Meanwhile, the constraints on the parameter space arising from the stationarity conditions for the autoregressive parameters are handled by a reparametrization scheme. Bayesian predictive inferences for the future vector are also investigated. An application is illustrated through a real example from a multiple sclerosis clinical trial. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:484 / 495
页数:12
相关论文
共 50 条