An approach for textual entailment recognition based on stacking and voting

被引:0
|
作者
Kozareva, Zornitsa [1 ]
Montoyo, Andres [1 ]
机构
[1] Univ Alicante, Dept Lenguajes & Sistemas Informat, Alicante, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a machine-learning approach for the recognition of textual entailment. For our approach we model lexical and semantic features. We study the effect of stacking and voting joint classifier combination techniques which boost the final performance of the system. In an exhaustive experimental evaluation, the performance of the developed approach is measured. The obtained results demonstrate that an ensemble of classifiers achieves higher accuracy than an individual classifier and comparable results to already existing textual entailment systems.
引用
收藏
页码:889 / +
页数:2
相关论文
共 50 条
  • [1] A Hybrid Approach to Textual Entailment Recognition
    Mei, Rongyue
    Fu, Hongping
    Li, Xuejin
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONIC, INDUSTRIAL AND CONTROL ENGINEERING, 2014, 5 : 616 - 620
  • [2] A machine learning approach to textual entailment recognition
    Zanzotto, Fabio Massimo
    Pennacchiotti, Marco
    Moschitti, Alessandro
    [J]. NATURAL LANGUAGE ENGINEERING, 2009, 15 : 551 - 582
  • [3] Textual Entailment Recognition Based on Structural Isomorphism
    Uribe, Diego
    [J]. MICAI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5317 : 212 - 219
  • [4] A WordNet-based semantic approach to textual entailment and cross-lingual textual entailment
    Javier Castillo, Julio
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2011, 2 (03) : 177 - 189
  • [5] Textual entailment recognition based on dependency analysis and WordNet
    Herrera, Jesus
    Penas, Anselmo
    Verdejo, Felisa
    [J]. MACHINE LEARNING CHALLENGES: EVALUATING PREDICTIVE UNCERTAINTY VISUAL OBJECT CLASSIFICATION AND RECOGNIZING TEXTUAL ENTAILMENT, 2006, 3944 : 231 - 239
  • [6] A WordNet-based semantic approach to textual entailment and cross-lingual textual entailment
    Julio Javier Castillo
    [J]. International Journal of Machine Learning and Cybernetics, 2011, 2 : 177 - 189
  • [7] Textual entailment recognition based on effective text features
    Du, Yongping
    Yao, Changqing
    Liu, Jiangli
    [J]. Journal of Convergence Information Technology, 2012, 7 (13) : 318 - 325
  • [8] Alignment Based Approach for Arabic Textual Entailment
    Boudaa, Tarik
    El Marouani, Mohamed
    Enneya, Nourddine
    [J]. SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2018), 2019, 148 : 246 - 255
  • [9] Deep Learning for Textual Entailment Recognition
    Lyu, Chen
    Lu, Yanan
    Ji, Donghong
    Chen, Bo
    [J]. 2015 IEEE 27TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2015), 2015, : 154 - 161
  • [10] Syntactic testsuites and Textual Entailment Recognition
    Bedaride, Paul
    Gardent, Claire
    [J]. LREC 2010 - SEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2010, : 3132 - 3136