The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster

被引:74
|
作者
Hunter, Chad M. [1 ,2 ]
Huang, Wen [1 ,2 ,3 ]
Mackay, Trudy F. C. [1 ,2 ]
Singh, Nadia D. [1 ,2 ,4 ]
机构
[1] N Carolina State Univ, Dept Biol Sci, Genet Program, Raleigh, NC 27695 USA
[2] N Carolina State Univ, WM Keck Ctr Behav Biol, Raleigh, NC 27695 USA
[3] N Carolina State Univ, Initiat Biol Complex, Raleigh, NC 27695 USA
[4] N Carolina State Univ, Bioinformat Res Ctr, Raleigh, NC 27695 USA
来源
PLOS GENETICS | 2016年 / 12卷 / 04期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
PROTEIN-TYROSINE-PHOSPHATASE; JAK/STAT SIGNALING COMPONENTS; CROSSING-OVER FREQUENCY; MEIOTIC RECOMBINATION; CHROMOSOME SEGREGATION; SACCHAROMYCES-CEREVISIAE; TRANSPOSABLE ELEMENTS; DIRECTIONAL SELECTION; MULTIPLE COMPARISONS; 3RD CHROMOSOME;
D O I
10.1371/journal.pgen.1005951
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find similar to 2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior
    Shorter, John
    Couch, Charlene
    Huang, Wen
    Carbone, Mary Anna
    Peiffer, Jason
    Anholt, Robert R. H.
    Mackay, Trudy F. C.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (27) : E3555 - E3563
  • [2] Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster
    Dembeck, Lauren M.
    Boeroeczky, Katalin
    Huang, Wen
    Schal, Coby
    Anholt, Robert R. H.
    Mackay, Trudy F. C.
    [J]. ELIFE, 2015, 4
  • [3] Unusual genetic architecture of natural variation affecting drug resistance in Drosophila melanogaster
    Carrillo, R
    Gibson, G
    [J]. GENETICAL RESEARCH, 2002, 80 (03) : 205 - 213
  • [4] THE ORGANIZATION OF GENETIC-VARIATION FOR RECOMBINATION IN DROSOPHILA-MELANOGASTER
    BROOKS, LD
    MARKS, RW
    [J]. GENETICS, 1986, 114 (02) : 525 - 547
  • [5] GENETIC BASIS OF NATURAL VARIATION IN DROSOPHILA-MELANOGASTER
    MILKMAN, R
    [J]. ADVANCES IN GENETICS INCORPORATING MOLECULAR GENETIC MEDICINE, 1970, 15 : 55 - &
  • [6] Multiple capacitors for natural genetic variation in Drosophila melanogaster
    Takahashi, Kazuo H.
    [J]. MOLECULAR ECOLOGY, 2013, 22 (05) : 1356 - 1365
  • [7] GENETIC-VARIATION FOR RATE OF DEVELOPMENT IN NATURAL-POPULATIONS OF DROSOPHILA-MELANOGASTER
    MARINKOVIC, D
    AYALA, FJ
    [J]. GENETICA, 1986, 71 (02) : 123 - 132
  • [8] Genetic variation affecting heart rate in Drosophila melanogaster
    Robbins, J
    Aggarwal, R
    Nichols, R
    Gibson, G
    [J]. GENETICS RESEARCH, 1999, 74 (02) : 121 - 128
  • [9] Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines
    Huang, Wen
    Massouras, Andreas
    Inoue, Yutaka
    Peiffer, Jason
    Ramia, Miquel
    Tarone, Aaron M.
    Turlapati, Lavanya
    Zichner, Thomas
    Zhu, Dianhui
    Lyman, Richard F.
    Magwire, Michael M.
    Blankenburg, Kerstin
    Carbone, Mary Anna
    Chang, Kyle
    Ellis, Lisa L.
    Fernandez, Sonia
    Han, Yi
    Highnam, Gareth
    Hjelmen, Carl E.
    Jack, John R.
    Javaid, Mehwish
    Jayaseelan, Joy
    Kalra, Divya
    Lee, Sandy
    Lewis, Lora
    Munidasa, Mala
    Ongeri, Fiona
    Patel, Shohba
    Perales, Lora
    Perez, Agapito
    Pu, LingLing
    Rollmann, Stephanie M.
    Ruth, Robert
    Saada, Nehad
    Warner, Crystal
    Williams, Aneisa
    Wu, Yuan-Qing
    Yamamoto, Akihiko
    Zhang, Yiqing
    Zhu, Yiming
    Anholt, Robert R. H.
    Korbel, Jan O.
    Mittelman, David
    Muzny, Donna M.
    Gibbs, Richard A.
    Barbadilla, Antonio
    Johnston, J. Spencer
    Stone, Eric A.
    Richards, Stephen
    Deplancke, Bart
    [J]. GENOME RESEARCH, 2014, 24 (07) : 1193 - 1208
  • [10] Genetic Architecture of Natural Variation Underlying Adult Foraging Behavior That Is Essential for Survival of Drosophila melanogaster
    Lee, Yuh Chwen G.
    Yang, Qian
    Chi, Wanhao
    Turkson, Susie A.
    Du, Wei A.
    Kemkemer, Claus
    Zeng, Zhao-Bang
    Long, Manyuan
    Zhuang, Xiaoxi
    [J]. GENOME BIOLOGY AND EVOLUTION, 2017, 9 (05): : 1357 - 1369