The basic reproduction number R0 in time-heterogeneous environments

被引:0
|
作者
Inaba, Hisashi [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
Cone spectral radius; Orbital spectral radius; Basic reproduction number; Generation evolution operator; SIS EPIDEMIC MODEL; VECTOR-BORNE DISEASES; GLOBAL BEHAVIOR; DEFINITION; THRESHOLD; MAPS;
D O I
10.1007/s00285-019-01375-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the previous paper (Inaba in J Math Biol 65:309-348, 2012), we proposed a new (most biologically natural) definition of the basic reproduction number R-0 for structured population in general time-heterogeneous environments based on the generation evolution operator. Using the mathematical definition for cone spectral radius, we show that our R-0 is given by the spectral radius of the generation evolution operator in the time-state space. Then as far as we consider linear population dynamics, our R-0 is a threshold value for population extinction and persistence in time-heterogeneous environments. Next we prove that even for nonlinear systems, our R-0 plays a role of a threshold value for population extinction in time-heterogeneous environments. For periodic systems, we can show that supercritical condition R-0 > 1 implies existence of positive periodic solution. Finally using the idea of R-0 in time-heterogeneous environment, we examine existence and stability of periodic solution in the age-structured SIS epidemic model with time-periodic parameters.
引用
收藏
页码:731 / 764
页数:34
相关论文
共 50 条
  • [1] Complexity of the Basic Reproduction Number (R0)
    Delamater, Paul L.
    Street, Erica J.
    Leslie, Timothy F.
    Yang, Y. Tony
    Jacobsen, Kathryn H.
    [J]. EMERGING INFECTIOUS DISEASES, 2019, 25 (01) : 1 - 4
  • [2] The basic reproduction number, R0, in structured populations
    Neal, Peter
    Theparod, Thitiya
    [J]. MATHEMATICAL BIOSCIENCES, 2019, 315
  • [3] The Reproduction Number R0
    Britton, Tom
    Pardoux, Etienne
    Ball, Frank
    Laredo, Catherine
    Sirl, David
    Viet Chi Tran
    [J]. STOCHASTIC EPIDEMIC MODELS WITH INFERENCE, 2019, 2255 : 251 - 261
  • [4] The basic reproduction number (R0) of measles: a systematic review
    Guerra, Fiona M.
    Bolotin, Shelly
    Lim, Gillian
    Heffernan, Jane
    Deeks, Shelley L.
    Li, Ye
    Crowcroft, Natasha S.
    [J]. LANCET INFECTIOUS DISEASES, 2017, 17 (12): : E420 - E428
  • [5] Monkeypox: Early estimation of basic reproduction number R0 in Europe
    Branda, Francesco
    Pierini, Massimo
    Mazzoli, Sandra
    [J]. JOURNAL OF MEDICAL VIROLOGY, 2023, 95 (01)
  • [6] CHASING R0: UNDERSTANDING THE EFFECTS OF POPULATION DYNAMICS ON THE BASIC REPRODUCTION NUMBER
    Johnson, Tina V.
    Mikler, Armin R.
    [J]. JOURNAL OF BIOLOGICAL SYSTEMS, 2011, 19 (04) : 577 - 589
  • [7] Estimation of the basic reproduction number (R0) for the novel coronavirus disease in Sri Lanka
    Samath Dharmaratne
    Supun Sudaraka
    Ishanya Abeyagunawardena
    Kasun Manchanayake
    Mahen Kothalawala
    Wasantha Gunathunga
    [J]. Virology Journal, 17
  • [8] Estimation of the basic reproduction number (R0) for the novel coronavirus disease in Sri Lanka
    Dharmaratne, Samath
    Sudaraka, Supun
    Abeyagunawardena, Ishanya
    Manchanayake, Kasun
    Kothalawala, Mahen
    Gunathunga, Wasantha
    [J]. VIROLOGY JOURNAL, 2020, 17 (01)
  • [9] Survival schedules and the estimation of the basic reproduction number (R0) without the assumption of extreme cases
    Fernando Chaves, Luis
    [J]. RICERCHE DI MATEMATICA, 2018, 67 (01) : 113 - 123
  • [10] Evaluating different epidemiological models with the identical basic reproduction number Script capital R0
    Bai, Fan
    [J]. JOURNAL OF BIOLOGICAL DYNAMICS, 2020, 14 (01) : 849 - 870