Sub-Riemannian Mean Curvature Flow for Image Processing

被引:18
|
作者
Citti, G. [1 ]
Franceschiello, B. [2 ]
Sanguinetti, G. [3 ]
Sarti, A. [2 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
[2] CNRS, EHESS, Ctr Math, F-75244 Paris, France
[3] Tech Univ Eindhoven, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2016年 / 9卷 / 01期
基金
欧洲研究理事会;
关键词
image completion; sub-Riemannian models; existence result; INVARIANT PARABOLIC EVOLUTIONS; INVERTIBLE ORIENTATION SCORES; FUNCTIONAL ARCHITECTURE; CONTOUR ENHANCEMENT; VISCOSITY SOLUTIONS; MINIMAL-SURFACES; REGULARITY; DIFFUSION; FIELDS; CONNECTIONS;
D O I
10.1137/15M1013572
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we reconsider the sub-Riemannian cortical model of image completion introduced in [G. Citti and A. Sarti, J. Math. Imaging Vision, 24 (2006), pp. 307-326]. This model combines two mechanisms, the sub-Riemannian diffusion and the concentration, giving rise to a diffusion driven motion by curvature. In this paper we give a formal proof of the existence of viscosity solutions of the sub-Riemannian motion by curvature. Furthermore we illustrate the sub-Riemannian finite difference scheme used to implement the model and we discuss some properties of the algorithm. Finally results of completion and enhancement on a number of natural images are shown and compared with other models.
引用
收藏
页码:212 / 237
页数:26
相关论文
共 50 条