Leptin alleviates endoplasmic reticulum stress induced by cerebral ischemia/reperfusion injury via the PI3K/Akt signaling pathway

被引:7
|
作者
Zhang, Yan [1 ]
Cheng, Daobin [2 ]
Jie, Chunxiao [2 ]
Liu, Tao [3 ]
Huang, Shixiong [3 ]
Hu, Shijun [3 ]
机构
[1] Guangxi Med Univ, Dept Rehabil, Affiliated Hosp 2, Naming 530007, Guangxi, Peoples R China
[2] Guangxi Med Univ, Dept Neurol, Affiliated Hosp 1, Nanning 530021, Peoples R China
[3] Hainan Med Univ, Hainan Gen Hosp, Dept Neurol, Hainan Affiliated Hosp, Haikou 570311, Hainan, Peoples R China
关键词
UNFOLDED PROTEIN RESPONSE; ISCHEMIA; INFLAMMATION; INHIBITION; APOPTOSIS;
D O I
10.1042/BSR20221443
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Cerebral ischemic/reperfusion injury (CIRI) is a key factor for the prognosis of ischemic stroke (IS), the leading disease in terms of global disability and fatality rates. Recent studies have shown that endoplasmic reticulum stress (ERS) may be a target against CIRI and that leptin, a peptide hormone, has neuroprotective activity to mitigate CIRI. Methods: An in vitro CIRI model was induced in primary cortical neurons by oxygen-glucose deprivation and reoxygenation (OGD/R) after pretreatment with LY294002 (10 mu mol/L) and/or leptin (0.4 mg/L), and cell viability, neuronal morphology and endoplasmic reticulum (ER) dysfunction were evaluated. An in vivo CIRI model was established in rats by middle cerebral artery occlusion and reperfusion (MCAO/R) after the injection of LY294002 (10 mu mol/L) and/or leptin (1 mg/kg), and neurological function, infarct volume, cerebral pathological changes, the expression of ERS-related proteins and cell apoptosis were examined. Results: In vitro, leptin treatment improved the cell survival rate, ameliorated neuronal pathological morphology and alleviated OGD/R-induced ERS. In vivo, administration of leptin significantly reduced the infarct volume, neurological deficit scores and neuronal apoptosis as well as pathological alterations. In addition, leptin suppressed MCAO/R-induced ERS and may decrease apoptosis by inhibiting ERS-related death and caspase 3 activation. It also regulated expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax in the cortex. Furthermore, the inhibitory effect of leptin on ERS was significantly decreased by the effective phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Conclusions: These results confirm that ERS plays an important role in CIRI and that leptin can inhibit the activation of ERS through the PI3K/Akt pathway, thereby alleviating CIRI. These findings provide novel therapeutic targets for IS.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway
    Tang, Lu
    Mo, Yingli
    Li, Yunpeng
    Zhong, Yongkang
    He, Shangfei
    Zhang, Ya
    Tang, Ying
    Fu, Shanshan
    Wang, Xianbao
    Chen, Aihua
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 486 (03) : 774 - 780
  • [2] β-Caryophyllene Pretreatment Alleviates Focal Cerebral Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway
    Zhang, Qian
    An, Ruidi
    Tian, Xiaocui
    Yang, Mei
    Li, Minghang
    Lou, Jie
    Xu, Lu
    Dong, Zhi
    [J]. NEUROCHEMICAL RESEARCH, 2017, 42 (05) : 1459 - 1469
  • [3] β-Caryophyllene Pretreatment Alleviates Focal Cerebral Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway
    Qian Zhang
    Ruidi An
    Xiaocui Tian
    Mei Yang
    Minghang Li
    Jie Lou
    Lu Xu
    Zhi Dong
    [J]. Neurochemical Research, 2017, 42 : 1459 - 1469
  • [4] Isorhapontigenin alleviates cerebral ischemia/reperfusion injuries in rats and modulated the PI3K/Akt signaling pathway
    Sun, Xin
    Cui, Xin
    [J]. NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2020, 393 (09) : 1753 - 1760
  • [5] Isorhapontigenin alleviates cerebral ischemia/reperfusion injuries in rats and modulated the PI3K/Akt signaling pathway
    Xin Sun
    Xin Cui
    [J]. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393 : 1753 - 1760
  • [6] Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway
    Shu, Zunpeng
    Yang, Yanni
    Yang, Liu
    Jiang, Hai
    Yu, Xiaojin
    Wang, Yi
    [J]. FOOD & FUNCTION, 2019, 10 (01) : 203 - 215
  • [7] Effects of endoplasmic reticulum stress on chondrocyte apoptosis via the PI3K/AKT signaling pathway
    Zhou, Libo
    Wu, Fan
    Wang, Jing
    Zhao, Yuqing
    Wu, Gaoyi
    Su, Yucheng
    [J]. TISSUE & CELL, 2024, 87
  • [8] Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway
    Li, Jianli
    Wang, Keyan
    Liu, Meinv
    He, Jinhua
    Zhang, Huanhuan
    Liu, Huan
    [J]. JOURNAL OF MOLECULAR HISTOLOGY, 2023, 54 (03) : 173 - 181
  • [9] Nobiletin alleviates ischemia/reperfusion injury in the kidney by activating PI3K/AKT pathway
    Liu, Bo
    Deng, Quanhong
    Zhang, Lei
    Zhu, Wen
    [J]. MOLECULAR MEDICINE REPORTS, 2020, 22 (06) : 4655 - 4662
  • [10] Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats
    Ma, Xiao-Hui
    Gao, Qiang
    Jia, Zhen
    Zhang, Ze-Wei
    [J]. INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2015, 125 (02) : 140 - 146