A NEW CLASS OF GLOBAL FRACTIONAL-ORDER PROJECTIVE DYNAMICAL SYSTEM WITH AN APPLICATION

被引:5
|
作者
Wu, Zeng-Bao [1 ]
Zou, Yun-Zhi [2 ]
Huang, Nan-Jing [2 ]
机构
[1] Luoyang Normal Univ, Dept Math, Luoyang 471934, Henan, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order projective dynamical system; delay; perturbation; Krasnoselskii fixed point theorem; approximating algorithm; DIFFERENTIAL-EQUATIONS; STABILITY; DELAY; UNIQUENESS; EXISTENCE; BEHAVIOR;
D O I
10.3934/jimo.2018139
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, some existence and uniqueness of solutions for a new class of global fractional-order projective dynamical system with delay and perturbation are proved by employing the Krasnoselskii fixed point theorem and the Banach fixed point theorem. Moreover, an approximating algorithm is also provided to find a solution of the global fractional-order projective dynamical system. Finally, an application to the idealized traveler information systems for day-to-day adjustments processes and a numerical example are given.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 50 条
  • [1] Global fractional-order projective dynamical systems
    Wu Zeng-bao
    Zou Yun-zhi
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) : 2811 - 2819
  • [2] A class of global fractional-order projective dynamical systems involving set-valued perturbations
    Wu, Zeng-bao
    Zou, Yun-zhi
    Huang, Nan-jing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 277 : 23 - 33
  • [3] Dynamical analysis of a new fractional-order Rabinovich system and its fractional matrix projective synchronization
    He, Jinman
    Chen, Fangqi
    [J]. CHINESE JOURNAL OF PHYSICS, 2018, 56 (05) : 2627 - 2637
  • [4] Hybrid projective synchronization of complex dynamical networks with fractional-order system nodes
    Zhang Fan-di
    [J]. INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 2365 - 2368
  • [5] Projective Synchronization for a Class of Fractional-Order Chaotic Systems with Fractional-Order in the (1, 2) Interval
    Zhou, Ping
    Bai, Rongji
    Zheng, Jiming
    [J]. ENTROPY, 2015, 17 (03): : 1123 - 1134
  • [6] The global attractive sets and synchronization of a fractional-order complex dynamical system
    Lin, Minghung
    Hou, Yiyou
    Al-Towailb, Maryam A.
    Saberi-Nik, Hassan
    [J]. AIMS MATHEMATICS, 2022, 8 (02): : 3523 - 3541
  • [7] The global dynamics of a new fractional-order chaotic system
    Liu, Ping
    Zhang, Yulan
    Mohammed, Khidhair Jasim
    Lopes, Antonio M.
    Saberi-Nik, Hassan
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 175
  • [8] A new fractional-order hyperchaotic system and its modified projective synchronization
    Gao, Yuan
    Liang, Chenghua
    Wu, Qiqi
    Yuan, Haiying
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 76 : 190 - 204
  • [9] Synchronization for a Class of Fractional-Order Hyperchaotic System and Its Application
    Tan, Wen
    Jiang, Feng Ling
    Huang, Chuang Xia
    Zhou, Lan
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [10] Dynamical behaviour of fractional-order finance system
    Farman, Muhammad
    Akguel, Ali
    Saleem, Muhammad Umer
    Imtiaz, Sumaiyah
    Ahmad, Aqeel
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):