Vortex solutions in nonabelian Higgs theories

被引:10
|
作者
Suranyi, P [1 ]
机构
[1] Univ Cincinnati, Cincinnati, OH 45221 USA
关键词
D O I
10.1016/S0370-2693(00)00440-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A new class of vortex solutions is found in SU(2) gauge theories with two adjoint representation Higgs bosons. Implications of these new solutions and their possible connection with Center Gauge fixed pule gauge theories are discussed, (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:136 / 142
页数:7
相关论文
共 50 条
  • [1] Higgs-free massive nonabelian gauge theories
    Hurth, T
    [J]. HELVETICA PHYSICA ACTA, 1997, 70 (03): : 406 - 416
  • [2] A nonabelian particle-vortex duality in gauge theories
    Murugan, Jeff
    Nastase, Horatiu
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08):
  • [3] A nonabelian particle-vortex duality in gauge theories
    Jeff Murugan
    Horatiu Nastase
    [J]. Journal of High Energy Physics, 2016
  • [4] Vortex strings and nonabelian sine-Gordon theories
    Park, QH
    Shin, HJ
    [J]. PHYSICS LETTERS B, 1999, 454 (3-4) : 259 - 264
  • [5] Nonabelian duality and Higgs multiplets in supersymmetric grand unified theories
    Hotta, T
    Izawa, KI
    Yanagida, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1996, 95 (05): : 949 - 961
  • [6] ON CLASSICAL-SOLUTIONS OF NONABELIAN GAUGE-THEORIES
    MALEC, E
    [J]. ACTA PHYSICA POLONICA B, 1987, 18 (11): : 1017 - 1064
  • [7] Classifying vortex solutions to gauge theories
    Lepora, NF
    Kibble, TWB
    [J]. PHYSICAL REVIEW D, 1999, 59 (12):
  • [8] On Nonabelian Theories and Abelian Differentials
    Marshakov, A.
    [J]. DIFFERENTIAL EQUATIONS: GEOMETRY, SYMMETRIES AND INTEGRABILITY - THE ABEL SYMPOSIUM 2008, 2009, 5 : 257 - 274
  • [9] Generalized Abelian Higgs model with analytical vortex solutions
    Izquierdo, Alonso
    Fuertes, W. Garcia
    Guilarte, J. Mateos
    [J]. PHYSICAL REVIEW D, 2022, 106 (01)
  • [10] ON CURVED VORTEX SOLUTIONS IN THE ABELIAN HIGGS-MODEL
    DOBROWOLSKI, T
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (03) : 1054 - 1062