Exact solutions of a generalized Boussinesq equation

被引:19
|
作者
Bruzon, M. S. [1 ]
机构
[1] Univ Cadiz, Dept Matemat, Cadiz, Spain
关键词
partial differential equation; symmetry; solution; DOUBLE DISPERSION-EQUATION; NONCLASSICAL SYMMETRIES; REDUCTIONS;
D O I
10.1007/s11232-009-0079-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze a generalized Boussinesq equation using the theory of symmetry reductions of partial differential equations. The Lie symmetry group analysis of this equation shows that the equation has only a two-parameter point symmetry group corresponding to traveling-wave solutions. To obtain exact solutions, we use two procedures: a direct method and the G'/G-expansion method. We express the traveling-wave solutions in terms of hyperbolic, trigonometric, and rational functions.
引用
收藏
页码:894 / 904
页数:11
相关论文
共 50 条