Remote sensing of water cloud parameters using neural networks

被引:19
|
作者
Cerdena, Abidan [1 ]
Gonzalez, Albano [1 ]
Perez, Juan C. [1 ]
机构
[1] Univ La Laguna, Dept Fis FEES, Remote Sensing Lab, E-38200 San Cristobal la Laguna, Spain
关键词
D O I
10.1175/JTECH1943.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this work a method for determining the micro- and macrophysical properties of oceanic stratocumulus clouds is presented. It is based on the inversion of a radiative transfer model that computes the albedos and brightness temperatures in the NOAA Advanced Very High Resolution Radiometer (AVHRR) channels. This inversion is performed using artificial neural networks (ANNs), which are trained and optimized by genetic algorithms to fit theoretical computations. A detailed study of the ANN parameters and training algorithms demonstrates the convenience of using the "backpropagation with momentum" method. The proposed retrieval method is applied to daytime and nighttime imagery and was validated using ground data collected in Tenerife (Canary Islands), obtaining a good agreement.
引用
收藏
页码:52 / 63
页数:12
相关论文
共 50 条
  • [1] Remote sensing of water cloud parameters using neural networks
    Cerdeña, Abidán
    González, Albano
    Pérez, Juan C.
    [J]. Journal of Atmospheric and Oceanic Technology, 2007, 24 (01): : 52 - 63
  • [2] Cloud detection using convolutional neural networks on remote sensing images
    Matsunobu, Lysha M.
    Pedro, Hugo T. C.
    Coimbra, Carlos F. M.
    [J]. SOLAR ENERGY, 2021, 230 : 1020 - 1032
  • [3] A Cloud Detection Algorithm for Remote Sensing Images Using Fully Convolutional Neural Networks
    Mohajerani, Sorour
    Krammer, Thomas A.
    Saeedi, Parvaneh
    [J]. 2018 IEEE 20TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2018,
  • [4] REMOTE-SENSING OF CLOUD PARAMETERS
    DVORYASHIN, SV
    [J]. IZVESTIYA AKADEMII NAUK FIZIKA ATMOSFERY I OKEANA, 1994, 30 (02): : 223 - 229
  • [5] Retrieval of cloud geometrical parameters using remote sensing data
    Kuji, M
    Nakjima, T
    [J]. OPTICAL REMOTE SENSING OF THE ATMOSPHERE AND CLOUDS II, 2001, 4150 : 225 - 234
  • [6] REMOTE-SENSING OF CLOUD PARAMETERS
    CHAHINE, MT
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 1982, 39 (01) : 159 - 170
  • [7] Eutrophication Analysis of Water Reservoirs by Remote Sensing and Neural Networks
    Silva, H. A. Nascimento
    Panella, M.
    [J]. 2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA), 2018, : 458 - 463
  • [8] Extraction of cloud parameters using artificial neural networks
    Cerdena, A.
    Gonzalez, A.
    Perez, J. C.
    [J]. REVISTA DE TELEDETECCION, 2005, (24): : 49 - 53
  • [9] Remote sensing of forest change using artificial neural networks
    Gopal, S
    Woodcock, C
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (02): : 398 - 404
  • [10] Remote sensing of forest change using artificial neural networks
    Boston Univ, Boston, United States
    [J]. IEEE Trans Geosci Remote Sens, 2 (398-404):