BREAKING THE CURSE OF DIMENSIONALITY, OR HOW TO USE SVD IN MANY DIMENSIONS

被引:290
|
作者
Oseledets, I. V. [1 ]
Tyrtyshnikov, E. E. [1 ]
机构
[1] Russian Acad Sci, Inst Numer Math, Moscow 119991, Russia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2009年 / 31卷 / 05期
关键词
Tree-Tucker; canonical decomposition; Tucker decomposition; curse of dimensionality; APPROXIMATION; DECOMPOSITION; TENSORS;
D O I
10.1137/090748330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For d-dimensional tensors with possibly large d > 3, an hierarchical data structure, called the Tree-Tucker format, is presented as an alternative to the canonical decomposition. It has asymptotically the same (and often even smaller) number of representation parameters and viable stability properties. The approach involves a recursive construction described by a tree with the leafs corresponding to the Tucker decompositions of three-dimensional tensors, and is based on a sequence of SVDs for the recursively obtained unfolding matrices and on the auxiliary dimensions added to the initial "spatial" dimensions. It is shown how this format can be applied to the problem of multidimensional convolution. Convincing numerical examples are given.
引用
收藏
页码:3744 / 3759
页数:16
相关论文
共 50 条
  • [1] Breaking the curse of dimensionality
    Weimar, Markus
    DISSERTATIONES MATHEMATICAE, 2015, (505) : 5 - 112
  • [2] Breaking the curse of dimensionality in nonparametric testing
    Lavergne, Pascal
    Patilea, Valentin
    JOURNAL OF ECONOMETRICS, 2008, 143 (01) : 103 - 122
  • [3] Breaking the Curse of Dimensionality with Convex Neural Networks
    Bach, Francis
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [5] Breaking the curse of dimensionality for machine learning on genomic data
    O'Brien, A.
    Szul, P.
    Dunne, R.
    Bauer, D. C.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 : 727 - 728
  • [6] Breaking the dimensionality curse in multi-server queues
    Brandwajn, Alexandre
    Begin, Thomas
    COMPUTERS & OPERATIONS RESEARCH, 2016, 73 : 141 - 149
  • [7] Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors
    Vervliet, Nico
    Debals, Otto
    Sorber, Laurent
    De lathauwer, Lieven
    IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (05) : 71 - 79
  • [8] The Many Dimensions of Diastolic Function A Curse or a Blessing?
    Sengupta, Partho P.
    Marwick, Thomas H.
    JACC-CARDIOVASCULAR IMAGING, 2018, 11 (03) : 409 - 410
  • [9] Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs
    Chkifa, Abdellah
    Cohen, Albert
    Schwab, Christoph
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (02): : 400 - 428
  • [10] Breaking the curse of dimensionality to identify causal variants in Breeding 4
    Ramstein, Guillaume P.
    Jensen, Sarah E.
    Buckler, Edward S.
    THEORETICAL AND APPLIED GENETICS, 2019, 132 (03) : 559 - 567