Dealing with missing covariate data in fishery stock assessment models
被引:13
|
作者:
Maunder, Mark N.
论文数: 0引用数: 0
h-index: 0
机构:
Inter Amer Trop Tuna Commiss, La Jolla, CA 92037 USA
Quantitat Resource Assessment Llc, San Diego, CA 92129 USAInter Amer Trop Tuna Commiss, La Jolla, CA 92037 USA
Maunder, Mark N.
[1
,2
]
Deriso, Richard B.
论文数: 0引用数: 0
h-index: 0
机构:
Inter Amer Trop Tuna Commiss, La Jolla, CA 92037 USA
Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USAInter Amer Trop Tuna Commiss, La Jolla, CA 92037 USA
Deriso, Richard B.
[1
,3
]
机构:
[1] Inter Amer Trop Tuna Commiss, La Jolla, CA 92037 USA
[2] Quantitat Resource Assessment Llc, San Diego, CA 92129 USA
[3] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
Covariate;
Environmental variable;
Fisheries;
Missing data;
Random effect;
Recruitment;
Stock assessment;
GENERAL FRAMEWORK;
CATCH;
RECRUITMENT;
LIKELIHOOD;
UNIT;
D O I:
10.1016/j.fishres.2009.09.009
中图分类号:
S9 [水产、渔业];
学科分类号:
0908 ;
摘要:
Covariates are now commonly used in fisheries stock assessment models to provide additional information about model parameters, but their use can be complicated by missing values. A wide range of covariates have been used (e.g. environment, disease, predation, food, pollutants) to model different processes (e.g. recruitment, natural mortality, growth, catchability). Several approaches are available to deal with missing covariate values. We illustrate a likelihood based approach to deal with missing covariate data when including covariates into fisheries stock assessment models. The method treats the missing covariate values as parameters from a random effects distribution. The parameters of the random effects distribution are estimated based on the observed values of the covariate. The true likelihood is implemented by integrating across the missing value random effect and, in our stock assessment example, a random effect for unexplained variation in recruitment using Laplace approximation. Simulation analysis is used to test the performance of the method and compare it to alternative approaches: (1) ignoring the covariate altogether, (2) ignoring the years with missing covariate values, (3) substituting the missing values with the mean of the observed values, and (4) estimating the missing values as free parameters. We apply the simulation analysis to a linear regression and a statistical catch-at-age stock assessment model. The simulation analysis results indicate that the random effects method for dealing with missing covariate data works moderately well, but it does not provide a substantial benefit over other less complex methods. (C) 2009 Elsevier B.V. All rights reserved.
机构:
Natl Univ Singapore, Duke NUS Med Sch, Singapore, Singapore
Natl Neurosci Inst, Singapore, SingaporeNatl Univ Singapore, Duke NUS Med Sch, Singapore, Singapore
Saffari, Seyed Ehsan
Volovici, Victor
论文数: 0引用数: 0
h-index: 0
机构:
Erasmus MC Univ Med Ctr Rotterdam, Erasmus MC Stroke Ctr, Dept Neurosurg, Rotterdam, NetherlandsNatl Univ Singapore, Duke NUS Med Sch, Singapore, Singapore
Volovici, Victor
Ong, Marcus Eng Hock
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Duke NUS Med Sch, Singapore, Singapore
Singapore Gen Hosp, Dept Emergency Med, Singapore, Singapore
Singapore Hlth Serv, Hlth Serv Res Ctr, Singapore, SingaporeNatl Univ Singapore, Duke NUS Med Sch, Singapore, Singapore
Ong, Marcus Eng Hock
Goldstein, Benjamin Alan
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Duke NUS Med Sch, Singapore, Singapore
Duke Univ, Dept Biostat & Bioinformat, Durham, NC USANatl Univ Singapore, Duke NUS Med Sch, Singapore, Singapore
Goldstein, Benjamin Alan
Vaughan, Roger
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Duke NUS Med Sch, Singapore, SingaporeNatl Univ Singapore, Duke NUS Med Sch, Singapore, Singapore
Vaughan, Roger
Dammers, Ruben
论文数: 0引用数: 0
h-index: 0
机构:
Erasmus MC Univ Med Ctr Rotterdam, Erasmus MC Stroke Ctr, Dept Neurosurg, Rotterdam, NetherlandsNatl Univ Singapore, Duke NUS Med Sch, Singapore, Singapore
Dammers, Ruben
Steyerberg, Ewout W.
论文数: 0引用数: 0
h-index: 0
机构:
Erasmus MC Univ Med Ctr Rotterdam, Dept Publ Hlth, Rotterdam, Netherlands
Leiden Univ, Med Ctr, Dept Biomed Data Sci, Leiden, NetherlandsNatl Univ Singapore, Duke NUS Med Sch, Singapore, Singapore
Steyerberg, Ewout W.
Liu, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Duke NUS Med Sch, Singapore, Singapore
Singapore Hlth Serv, Hlth Serv Res Ctr, Singapore, Singapore
Singapore Hlth Serv, SingHlth AI Hlth Program, Singapore, Singapore
Natl Univ Singapore, Inst Data Sci, Singapore, SingaporeNatl Univ Singapore, Duke NUS Med Sch, Singapore, Singapore
机构:
Oregon Hlth & Sci Univ, Dept Family Med, Portland, OR 97239 USA
Oregon Hlth & Sci Univ, Div Biostat, Dept Publ Hlth & Prevent Med, Portland, OR 97239 USAOregon Hlth & Sci Univ, Dept Family Med, Portland, OR 97239 USA
Marino, Miguel
Buxton, Orfeu M.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Biobehav Hlth, University Pk, PA 16802 USA
Harvard Med Sch, Div Sleep Med, Boston, MA 02115 USA
Brigham & Womens Hosp, Dept Med, 75 Francis St, Boston, MA 02115 USA
Harvard TH Chan Sch Publ Hlth, Dept Social & Behav Sci, Boston, MA 02115 USAOregon Hlth & Sci Univ, Dept Family Med, Portland, OR 97239 USA
Buxton, Orfeu M.
Li, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USAOregon Hlth & Sci Univ, Dept Family Med, Portland, OR 97239 USA
机构:
Stanford Univ, Div Epidemiol, Dept Hlth Res & Policy, Stanford, CA 94305 USAStanford Univ, Div Epidemiol, Dept Hlth Res & Policy, Stanford, CA 94305 USA