Comparing Data Assimilation Filters for Parameter Estimation in a Neuron Model

被引:0
|
作者
Politi, Nicola [1 ,2 ]
Feng, Jianfeng [3 ,4 ]
Lu, Wenlian [5 ]
机构
[1] Univ Torino, Dept Math, Turin, TO, Italy
[2] Politecn Torino, Turin, TO, Italy
[3] Fudan Univ, Ctr Computat Syst Biol, Shanghai, Peoples R China
[4] Univ Warwick, Dept Comp Sci, Coventry, W Midlands, England
[5] Fudan Univ, Sch Math Sci, Ctr Computat Syst Biol, Shanghai, Peoples R China
关键词
DYNAMICAL ESTIMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data assimilation (DA) has proved to be an efficient framework for estimation problems in real-world complex dynamical systems arising in geoscience, and it has also begun to show its power in computational neuroscience. The ensemble Kalman filter (EnKF) is believed to be a powerful tool of DA in practice. In comparison to the other filtering methods of DA, such as the bootstrap filter (BF) and optimal sequential importance re-sampling (OPT-SIRS), it is considered more convenient in many applications, but with the theoretical flaw of Gaussian assumption. In this paper, we apply the EnKF, the BF and the OPT-SIRS to the estimation and prediction of a single computational neuron model with ten parameters and conduct a comparison study of these three DA filtering methods on this model. It is numerically shown that the EnKF presents the best performance in both accuracy and computation load. We argue that the EnKF will be a promising tool in the large-scale DA problem occurring in computational neuroscience with experimental data.
引用
收藏
页码:4767 / 4774
页数:8
相关论文
共 50 条
  • [1] Soil model parameter estimation with ensemble data assimilation
    Orescanin, Biljana
    Rajkovic, Borivoj
    Zupanski, Milija
    Zupanski, Dusanka
    ATMOSPHERIC SCIENCE LETTERS, 2009, 10 (02): : 127 - 131
  • [2] Variational data assimilation for parameter estimation: application to a simple morphodynamic model
    Polly J. Smith
    Sarah L. Dance
    Michael J. Baines
    Nancy K. Nichols
    Tania R. Scott
    Ocean Dynamics, 2009, 59 : 697 - 708
  • [3] Geodynamo model and error parameter estimation using geomagnetic data assimilation
    Tangborn, Andrew
    Kuang, Weijia
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 200 (01) : 664 - 675
  • [4] Variational data assimilation for parameter estimation: application to a simple morphodynamic model
    Smith, Polly J.
    Dance, Sarah L.
    Baines, Michael J.
    Nichols, Nancy K.
    Scott, Tania R.
    OCEAN DYNAMICS, 2009, 59 (05) : 697 - 708
  • [5] On stochastic parameter estimation using data assimilation
    Hansen, James A.
    Penland, Cecile
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 88 - 98
  • [6] Dynamical synchronization of truth and model as an approach to data assimilation, parameter estimation, and model learning
    Duane, Gregory S.
    Tribbia, Joseph J.
    NONLINEAR DYNAMICS IN GEOSCIENCES, 2007, : 291 - +
  • [7] A hybrid data assimilation scheme for model parameter estimation: Application to morphodynamic modelling
    Smith, Polly J.
    Dance, Sarah L.
    Nichols, Nancy K.
    COMPUTERS & FLUIDS, 2011, 46 (01) : 436 - 441
  • [8] Model identification and parameter estimation of elastoplastic constitutive model by data assimilation using the particle filter
    Murakami, Akira
    Shinmura, Hayato
    Ohno, Shintaro
    Fujisawa, Kazunori
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2018, 42 (01) : 110 - 131
  • [9] Data Assimilation Methods for Neuronal State and Parameter Estimation
    Moye, Matthew J.
    Diekman, Casey O.
    JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2018, 8
  • [10] Parameter Estimation Using Ensemble-Based Data Assimilation in the Presence of Model Error
    Ruiz, Juan
    Pulido, Manuel
    MONTHLY WEATHER REVIEW, 2015, 143 (05) : 1568 - 1582