Thermofield dynamics: Quantum chaos versus decoherence

被引:40
|
作者
Xu, Zhenyu [1 ]
Chenu, Aurelia [2 ,3 ,4 ,5 ]
Prosen, Tomaz [6 ]
del Campo, Adolfo [2 ,3 ,4 ,7 ]
机构
[1] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[2] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[3] Donostia Int Phys Ctr, E-20018 San Sebastian, Spain
[4] Ikerbasque, Basque Fdn Sci, E-48013 Bilbao, Spain
[5] MIT, Cambridge, MA 02139 USA
[6] Univ Ljubljana, Fac Math & Phys, Jadranska Ul 19, Ljubljana 1000, Slovenia
[7] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA
基金
中国国家自然科学基金;
关键词
Quantum chaos - Quantum noise - Quantum theory - Stochastic models;
D O I
10.1103/PhysRevB.103.064309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum chaos imposes universal spectral signatures that govern the thermofield dynamics of a many-body system in isolation. The fidelity between the initial and time-evolving thermofield double states exhibits as a function of time a decay, dip, ramp, and plateau. Sources of decoherence give rise to a nonunitary evolution and result in information loss. Energy dephasing gradually suppresses quantum noise fluctuations and the dip associated with spectral correlations. Decoherence further delays the appearance of the dip and shortens the span of the linear ramp associated with chaotic behavior. The interplay between signatures of quantum chaos and information loss is determined by the competition among the decoherence, dip, and plateau characteristic times, as demonstrated in the stochastic Sachdev-Ye-Kitaev model.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Entanglement versus relaxation and decoherence in a quantum algorithm for quantum chaos
    Bettelli, S
    Shepelyansky, DL
    [J]. PHYSICAL REVIEW A, 2003, 67 (05):
  • [2] Quantum versus classical decoherence dynamics
    Gong, JB
    Brumer, P
    [J]. JOURNAL OF MODERN OPTICS, 2003, 50 (15-17) : 2411 - 2422
  • [3] Quantum chaos, decoherence and quantum computation
    Benenti, G.
    Casati, G.
    [J]. RIVISTA DEL NUOVO CIMENTO, 2007, 30 (10): : 449 - 484
  • [4] Quantum chaos, decoherence and quantum computation
    G. Benenti
    G. Casati
    [J]. La Rivista del Nuovo Cimento, 2007, 30 (10) : 449 - 484
  • [5] Chaos, decoherence and quantum cosmology
    Calzetta, Esteban
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (14)
  • [6] DECOHERENCE, CHAOS, THE QUANTUM AND THE CLASSICAL
    ZUREK, WH
    PAZ, JP
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1995, 110 (5-6): : 611 - 624
  • [7] Decoherence in chaos and quantum cosmology
    Sakagami, M
    Okamura, T
    Kubotani, H
    [J]. QUANTUM COHERENCE AND DECOHERENCE: FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 1996, : 287 - 290
  • [8] Extreme Decoherence and Quantum Chaos
    Xu, Zhenyu
    Pedro Garcia-Pintos, Luis
    Chenu, Aurelia
    del Campo, Adolfo
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (01)
  • [9] Quantum Boltzmann Machine and Thermofield Dynamics
    Lula-Rocha, Vinicius N. A.
    Trindade, Marco A. S.
    Vianna, J. David M.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2023, 53 (04)
  • [10] Horizons, thermofield dynamics and quantum information
    Kim, Sang Pyo
    Ge, Xian-Hui
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2008, (172): : 174 - 177