Volatility Forecasting using Time Series Data Mining and Evolutionary Computation Techniques

被引:0
|
作者
Ma, Irwin [1 ]
Wong, Tony [1 ]
Sankar, Thiagas [1 ]
机构
[1] Ecole Technol Super, Montreal, PQ H3C 1K3, Canada
关键词
Financial Volatility; forecasting; genetic algorithm; genetic programming; data mining; S&P 100;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional parametric methods have limited success in estimating and forecasting the volatility of financial securities. Recent advance in evolutionary computation has provided additional tools to conduct data mining effectively. The Current work applies the genetic programming in a Time Series Data Mining framework to characterize the S&P100 high frequency data in order to forecast the one step ahead integrated volatility. Results of the experiment have shown to be superior to those derived by the traditional methods.
引用
收藏
页码:2262 / 2262
页数:1
相关论文
共 50 条
  • [1] Evolutionary computation and economic time series forecasting
    Sharma, V.
    Srinivasan, D.
    [J]. 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 188 - 195
  • [2] Medical data mining using evolutionary computation
    Ngan, PS
    Wong, ML
    Lam, W
    Leung, KS
    Cheng, JCY
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 1999, 16 (01) : 73 - 96
  • [3] Trend Analysis of Time Series Data using Data mining Techniques
    Baheti, Arpit
    Toshniwal, Durga
    [J]. 2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 430 - 437
  • [4] A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting
    Maritnez-Alvarez, Francisco
    Troncoso, Alicia
    Asencio-Cortes, Gualberto
    Riquelme, Jose C.
    [J]. ENERGIES, 2015, 8 (11) : 13162 - 13193
  • [5] Tourism demand modelling and forecasting using data mining techniques in multivariate time series: a case study in Turkey
    Cankurt, Selcuk
    Subasi, Abdulhamit
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2016, 24 (05) : 3388 - 3404
  • [6] Evolutionary computation to explain deep learning models for time series forecasting
    Troncoso-Garcia, A. R.
    Martinez-Ballesteros, M.
    Martinez-Alvarez, F.
    Troncoso, A.
    [J]. 38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023, 2023, : 433 - 436
  • [7] Evolutionary computation and data mining
    Kusiak, A
    [J]. INTELLIGENT SYSTEMS IN DESIGN AND MANUFACTURING III, 2000, 4192 : 1 - 10
  • [8] Data Mining in Complex Diseases Using Evolutionary Computation
    Aguiar, Vanessa
    Seoane, Jose A.
    Freire, Ana
    Munteanu, Cristian R.
    [J]. BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 917 - 924
  • [9] Mining and Forecasting of Big Time-series Data
    Sakurai, Yasushi
    Matsubara, Yasuko
    Faloutsos, Christos
    [J]. SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 919 - 922
  • [10] Time series forecasting based on fuzzy data mining
    Wang, Weina
    Liu, Xiaodong
    [J]. ICIC Express Letters, 2015, 9 (09): : 2483 - 2489