Convex polyhedra with parquet faces

被引:0
|
作者
Timofeenko, A. V. [1 ,2 ]
机构
[1] Astafev Krasnoyarsk State Pedag Univ, Krasnoyarsk 660049, Russia
[2] Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk, Russia
基金
俄罗斯基础研究基金会;
关键词
DOKLADY Mathematic; Convex Polyhedron; Regular Polygon; Unit Edge; Pentagonal Pyramid;
D O I
10.1134/S1064562409050238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A study was conducted to demonstrate the construction of convex polyhedra with parquet faces. Applications of regular hedra and the influence of applications on the development of the theory of polyhedra were addressed. The algorithm used to produce each composite polyhedron involved a linear representation of the symmetry group of its constituent regular hedra and coordinate triples of fundamental vertices of these regular hedra specified as elements of an algebraic extension of the field of rational numbers. It was convenient to consider its skeleton in the form of an algebraic model whose support consisted of the vertex set and whose relation set was composed of the edges.
引用
收藏
页码:720 / 723
页数:4
相关论文
共 50 条
  • [1] Convex polyhedra with parquet faces
    A. V. Timofeenko
    [J]. Doklady Mathematics, 2009, 80 : 720 - 723
  • [2] Ununfoldable polyhedra with convex faces
    Bern, M
    Demaine, ED
    Eppstein, D
    Kuo, E
    Mantler, A
    Snoeyink, J
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 24 (02): : 51 - 62
  • [3] CONVEX POLYHEDRA WITH REGULAR FACES
    JOHNSON, NW
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (01): : 169 - &
  • [4] TO HISTORY OF STUDYING OF CONVEX POLYHEDRA WITH REGULAR FACES
    Gurin, A. M.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : A5 - A23
  • [5] AN ISOPERIMETRIC INEQUALITY FOR CONVEX POLYHEDRA WITH TRIANGULAR FACES
    KOMHOFF, M
    [J]. CANADIAN MATHEMATICAL BULLETIN, 1968, 11 (05): : 723 - &
  • [6] Centrally symmetric convex polyhedra with regular polygonal faces
    Kovic, Jurij
    [J]. MATHEMATICAL COMMUNICATIONS, 2013, 18 (02) : 429 - 440
  • [7] 5-VALENT CONVEX POLYHEDRA WITH PRESCRIBED FACES
    FISHER, JC
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 18 (01) : 1 - 11
  • [8] Minimum distance between the faces of two convex polyhedra: A sufficient condition
    Llanas, B
    De Sevilla, MF
    Feliu, V
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2003, 26 (04) : 361 - 385
  • [9] Minimum Distance Between the Faces of Two Convex Polyhedra: A Sufficient Condition
    B. Llanas
    M. Fernandez De Sevilla
    V. Feliu
    [J]. Journal of Global Optimization, 2003, 26 : 361 - 385
  • [10] Coloring the faces of convex polyhedra so that like colors are far apart
    Sanders, DP
    Zhao, Y
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 85 (02) : 348 - 360