Global Strong Solutions of the Cauchy Problem for 1D Compressible Navier-Stokes Equations with Density-dependent Viscosity

被引:0
|
作者
Liu, Sheng-quan [1 ,2 ]
Zhao, Jun-ning [2 ]
机构
[1] Liaoning Univ, Sch Math, Shenyang 110036, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; global strong solution; density-dependent viscosity; DISCONTINUOUS INITIAL DATA; BOUNDARY-VALUE-PROBLEMS; VACUUM; EXISTENCE; FLUIDS; MOTION; FLOW; 1-D;
D O I
10.1007/s10255-016-0631-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for one-dimensional compressible isentropic Navier-Stokes equations with density-dependent viscosity mu(rho) = A rho(alpha), where alpha > 0 and A > 0. The global existence of strong solutions is obtained, which improves the previous results by enlarging the interval of a. Moreover, our result shows that no vacuum is developed in a finite time provided the initial data does not contain vacuum.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 50 条