An algorithm for adaptive mesh refinement in n dimensions

被引:81
|
作者
Traxler, CT
机构
[1] Inst. für Theoretische Physik, Universität Gießen, D-35392 Gießen
关键词
mesh generation; bisection; refinement; finite elements;
D O I
10.1007/BF02684475
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The author describes a fast algorithm for local adaptive mesh refinement in n dimensions based on simplex bisection. A ready-to-use implementation of the algorithm in C++ pseudocode is given. It is proven that the scheme satisfies all conditions one usually places on grid refinement in the context of finite-element calculations. Bisection refinement also offers an interesting additional feature over the usual, regular, refinement scheme: all linear finite-element basis functions of one generation are of disjoint support. In the way the scheme is presented here, all generated simplex meshes satisfy a 'structural condition' which is exploited to simplify bookkeeping of the neighbour graph. However, bisection refinement places certain restrictions on the initial, coarsest grid. For a simply connected domain, a precise and useful criterion for the applicability of the described refinement scheme is formulated and proven.
引用
收藏
页码:115 / 137
页数:23
相关论文
共 50 条
  • [1] An algorithm for adaptive mesh refinement inn dimensions
    C. T. Traxler
    [J]. Computing, 1997, 59 : 115 - 137
  • [2] An adaptive mesh refinement algorithm for the radiative transport equation
    Jessee, JP
    Fiveland, WA
    Howell, LH
    Colella, P
    Pember, RB
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 139 (02) : 380 - 398
  • [3] Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions
    Rosenberg, D.
    Pouquet, A.
    Mininni, P. D.
    [J]. NEW JOURNAL OF PHYSICS, 2007, 9
  • [4] N-body code with adaptive mesh refinement
    Yahagi, H
    Yoshii, Y
    [J]. ASTROPHYSICAL SUPERCOMPUTING USING PARTICLE SIMULATIONS, 2003, (208): : 465 - 466
  • [5] N-body code with adaptive mesh refinement
    Yahagi, H
    Yoshi, Y
    [J]. ASTROPHYSICAL JOURNAL, 2001, 558 (01): : 463 - 475
  • [6] A NEW ADAPTIVE BOUNDARY MESH REFINEMENT BASED ON SIMPLE ALGORITHM
    KITA, E
    KAMIYA, N
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 1991, 18 (04) : 177 - 186
  • [7] Modified FARGO algorithm and its combination with adaptive mesh refinement
    Li, Shengtai
    Li, Hui
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 307 : 170 - 182
  • [8] Anisotropic adaptive mesh refinement for EM finite element analysis in 2 dimensions
    Taylor, S
    Sykulski, JK
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) : 1322 - 1325
  • [9] A Posteriori Error Estimate and Adaptive Mesh Refinement Algorithm for Atomistic/Continuum Coupling with Finite Range Interactions in Two Dimensions
    Liao, Mingjie
    Lin, Ping
    Zhang, Lei
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (01) : 198 - 226
  • [10] Parallel adaptive mesh refinement
    Diachin, Lori Freitag
    Hornung, Richard
    Plassmann, Paul
    Wissink, Andy
    [J]. PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, 2006, : 143 - 162