Recursive least squares identification for multirate multi-input single-output systems

被引:3
|
作者
Han, Lili [1 ,2 ]
Sheng, Jie [3 ]
Ding, Feng [2 ]
Shi, Yang [4 ]
机构
[1] Univ Saskatchewan, Saskatoon, SK, Canada
[2] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
[3] Washington Univ, Inst Technol, Tacoma, WA 98402 USA
[4] Univ Saskatchewan, Dept Engn Mech, Saskatoon, SK S7N 5A9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SAMPLED-DATA SYSTEMS; DUAL-RATE SYSTEMS; RATE STOCHASTIC-SYSTEMS; FAST-RATE MODELS; PARAMETER-ESTIMATION; AUXILIARY MODEL; DESIGN; STATE;
D O I
10.1109/ACC.2009.5160447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper derives state-space models for multirate multi-input sampled-data systems. Based on the corresponding transfer function models, an auxiliary model based recursive least squares algorithm is presented to identify the model parameters of the multirate systems from the multirate input-output data. Further, convergence properties of the proposed algorithm are analyzed. An illustrative example is given.
引用
收藏
页码:5604 / +
页数:2
相关论文
共 50 条
  • [1] Parameter identification of multi-input, single-output systems based on FIR models and least squares principle
    Ding, Jie
    Ding, Feng
    Zhang, Shi
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) : 297 - 305
  • [2] The data-filtering based bias compensation recursive least squares identification for multi-input single-output systems with colored noises
    Shi, Zhenwei
    Yang, Haodong
    Dai, Mei
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (07): : 4753 - 4783
  • [3] Auxiliary model identification method for multirate multi-input systems based on least squares
    Han, Lili
    Sheng, Jie
    Ding, Feng
    Shi, Yang
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (7-8) : 1100 - 1106
  • [4] RECURSIVE IDENTIFICATION OF MULTI-INPUT, MULTI-OUTPUT SYSTEMS
    GAUTHIER, A
    LANDAU, ID
    [J]. AUTOMATICA, 1978, 14 (06) : 609 - 614
  • [5] Recursive Least Squares Algorithm for Parameter Identification of Multi-input Output-error Systems Using the Data Ffiltering
    Ding, Jiling
    [J]. PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 2620 - 2625
  • [6] Novel recursive least squares identification for a class of nonlinear multiple-input single-output systems using the filtering technique
    Wang, Cheng
    Xun, Jing
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (11) : 1 - 8
  • [7] Extended Three-Stage Recursive Least Squares Identification Algorithm for multiple-input single-output CARARMA Systems
    Arwin, Munya Ali
    Shashoa, Nasar Aldian Ambark
    [J]. 2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 218 - 223
  • [8] The filtering based maximum likelihood recursive least squares estimation for multiple-input single-output systems
    Chen, Feiyan
    Ding, Feng
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (03) : 2106 - 2118
  • [9] Recursive least squares based hierarchical estimation for multi-input nonlinear systems
    Ding, Jiling
    Zhang, Weihai
    [J]. PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 4056 - 4061
  • [10] Blind deconvolution of multi-input single-output systems with binary sources
    Diamantaras, Konstantinos I.
    Papadimitriou, Theophilos
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (10) : 3720 - 3731